Автор: | И. Лудов, А. Кленин | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt |
Турнир по олимпийской системе, состоящий из N раундов, проводятся между 2N участниками по следующей схеме: сначала составляется последовательность из расставленных в произвольном порядке игроков. В первом раунде первый в последовательности участник соревнуется со вторым, третий с четвёртым, и т.д. Проигравшие выбывают из турнира, и на втором раунде победитель первой пары играет с победителем второй, победитель третьей с победителем четвёртой, и т.д. Наконец, после N-го раунда остаётся ровно один участник, который становится победителем турнира.
История таких турниров наглядно изображается с помощью специальной диаграммы, которая называется турнирной сеткой.
Назовём упорядоченной такую первоначальную последовательность участников, что в каждом матче сетки победителем оказывается первый участник. Например, первоначальная последовательность в приведённой справа сетке не соответствует этому условию — чтобы это исправить, нужно расположить участников в порядке: Life, MarineKing, TaeJa, Leenock, Mvp, Symbol, Rain, Hero.
Требуется по результатам всех проведённых в турнире матчей получить упорядоченную первоначальную расстановку участников.
N ≤ 10;
Входной файла содержит целое число N, за которым следуют 2N − 1 пар чисел Wi Li, означающих, что участник с номером Wi победил участника с номером Li. Участники пронумерованы от 1 до 2N.
Выходной файл должен содержать 2N целых чисел — номера участников, перечисленные в соответствии с упорядоченной первоначальной расстановкой.
1 ≤ N ≤ 20
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|