Автор: | Антон Карабанов | Ограничение времени: | 2 сек | |
Входной файл: | Стандартный вход | Ограничение памяти: | 512 Мб | |
Выходной файл: | Стандартный выход |
Два студента готовятся к экзамену, во время которого им будет предложен один из n вопросов (нумерация от 1 до n). Они решили разделить между собой вопросы для подготовки следующим образом:
Первый студент выбирает одно число a от 1 до n и учит a вопросов с номерами a, a + 1, a + 2, ... , a + a − 1. Если какой-то из номеров превышает n, нумерация продолжается с 1. Например, если n = 5 и a = 1, то первый студент будет учить только вопрос с номером 1, при a = 2 он будет учить вопросы с номерами 2 и 3, при a = 4 — вопросы с номерами 4, 5, 1 и 2, при a = 5 — все вопросы.
Второй студент тоже выбирает одно число b ≠ a от 1 до n и учит b вопросов с номерами b, b + 1, b + 2, ... , b + b − 1. Аналогично, если какой-то из номеров превышает n, счет продолжается с номер 1.
По известному количеству билетов n определите, сколько существует различных способов выбрать a и b, так что каждый вопросы экзамена будет подготовлен хотя бы одним из студентов.
Входные данные содержат целое число n.
Выведите целое число — количество способов выбрать a и b.
2 ≤ n ≤ 106
В первом примере на экзамене три билета. Независимо от выбора a и b, студенты подготовятся к ответам на все вопросы.
Во втором примере на экзамене четыре билета. Если один из студентов выберет a = 1, а другой b = 2, ни один из них не подготовит ответ на четвертый вопрос.
Если один из студентов выберет a = 1, а другой b = 3, ни один из них не подготовит ответ на второй вопрос.
В оставшихся случаях все вопросы будут выучены.
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|
2 |
|
|