Автор: | Антон Карабанов | Ограничение времени: | 1 сек | |
Входной файл: | Стандартный вход | Ограничение памяти: | 64 Мб | |
Выходной файл: | Стандартный выход |
Сегодня на занятии кружка по математике Тимофей узнал о существовании фигурных чисел. Больше всего его заинтересовали треугольные и квадратные числа.
Напомним, что число называется треугольным, если количество объектов, которое оно выражает, можно расставить в виде правильного треугольника. Аналогично, если это количество можно расставить в виде квадрата, то число называется квадратным.
На рисунке вы видите начало ряда треугольных чисел (1, 3, 6, 10, ...) и ряда квадратных чисел (1, 4, 9, 16, ...).
Тимофею нравится находить закономерности. Он смог доказать, что любое квадратное число (если оно больше 1) представимо в виде суммы всего двух треугольных чисел! Для поиска более сложных закономерностей ему нужно знать количество различных способов это сделать.
Помогите Тимофею! Найдите количество способов представления данного квадратного числа в виде суммы двух треугольных. Способы, отличающиеся порядком слагаемых, считаются одинаковыми.
В единственной строке входного файла записано одно натуральное квадратное число n.
Выведите одно натуральное число - ответ на задачу.
4 ≤ n ≤ 1010
Баллы за каждый тест начисляются независимо.
Комментарий к первому примеру: существует единственный способ представить 4 в виде суммы двух треугольных чисел: 4 = 3 + 1.
Комментарий ко второму примеру: существует два способа представить 16 в виде суммы двух треугольных чисел: 16 = 10 + 6 = 15 + 1.
Комментарий к третьему примеру: существует четыре способа представить 10000 в виде суммы двух треугольных чисел: 10000 = 5050 + 4950 = 5995 + 4005 = 8515 + 1485 = 9180 + 820.
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|
2 |
|
|
3 |
|
|