Автор: | А. Баранов | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt |
В рамках одного научного исследования по изучению псевдо-броуновского движения на плоскости возникла необходимость в моделировании поведения двумерных псевдо-частиц при их попадании в замкнутую ловушку, имеющую форму кольца.
Дело в том, что такого рода частицы в течение всей своей жизни совершают непрерывное прямолинейное движение с некоторой постоянной скоростью. Когда частица сталкивается с каким-либо препятствием, она отклоняется от исходной траектории и продолжает свое движение, как ни в чем не бывало. В очень редких случаях также могут встречаться абсолютно неподвижные частицы, скорости которых равны нулю.
Чтобы изучить подвижную псевдо-частицу, ее необходимо длительное время удерживать в некоторой ограниченной области. Для этого в экспериментальной лаборатории воссоздаются условия при которых достаточно большой набор частиц окажется в пределах замкнутого кольца, граница которого образует силовой барьер, через который частицы не могут пройти.
Определим кольцо, как область, заключенную между двумя окружностями с общим центром (x0, y0) и разными радиусами: r2 > r1 > 0. В этом случае исходное множество частиц можно условно разбить на три группы:
Рассмотрим поведение указанных частиц на временном интервале от 0 до T.
В процессе своего движения каждая отдельно взятая частица может то и дело сталкиваться с границей содержащей ее области. Будем полагать, что при столкновении частицы с границей она отражается относительно касательной прямой (как показано на рисунке). Модуль ее скорости при этом сохраняется. В свою очередь, взаимные столкновения двух и более частиц не влияют на их траектории и могут быть проигнорированы.
Требуется написать программу, которая по известному начальному положению частиц, исходным компонентам скорости и параметрам кольцевой области, производит расчет их траекторий в течение заданного промежутка времени. В качестве ответа вывести координаты положения частиц в равноотстоящие моменты времени tk = k ⋅ (T / m), где k = 1, 2, …, m.
Важным условием здесь является то, что в процессе движения ни одна из частиц не должна покидать область, которой она принадлежала в начальный момент времени. Данный факт следует также учесть при составлении проверочных тестов.
В первой строке входного файла "input.txt" содержатся параметры расчетной области: x0, y0, r1, r2. Во второй строке указано значение T, задающее длину временного интервала, и число его подынтервалов m. Далее следует натуральное число n и последовательность из 4 × n вещественных чисел, задающих начальные координаты и скорости каждой из частиц: xi, yi, ui, vi, где i = 1, 2, …, n.
Выходной файл "output.txt" должен содержать координаты положения частиц в моменты времени tk (k = 1, 2, …, m), расположенные в том же порядке, что и во входном файле. Все значения должны быть указаны с точностью до 5-го знака после запятой.
Полагается, что ни одна из частиц в начальный момент времени не лежит на границе кольца.
2 ≤ r1 ≤ (r2 − 2) ≤ 10, 0 < T ≤ 20, 0 < m ≤ 10,
ui2 + vi2 ≤ 25, 0 < n ≤ 4000
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|