Автор: | VI Всероссийская командная олимпиада школьников по программированию | Ограничение времени: | 2 сек | |
Входной файл: | numbers.in | Ограничение памяти: | 64 Мб | |
Выходной файл: | numbers.out |
При расследовании дорожно-транспортных происшествий часто возникают проблемы с розыском автомобилей, водители которых покинули место происшествия.
Получение свидетельских показаний — непростая работа. Ситуация осложняется тем, что очень часто свидетели могут только приблизительно вспомнить номер автомобиля. При этом с большой вероятностью опрашиваемый может перепутать порядок цифр или букв в номере.
По полученному от свидетеля происшествия номеру, подсчитайте, сколько различных номеров может получиться из него перестановкой букв и/или цифр, а также выведите все такие номера.
Напомним, что автомобильные номера в России состоят из трех букв и трех цифр, упорядоченных следующим образом: буква, три цифры, затем две буквы. Фрагмент номера, который идентифицирует регион, в котором зарегистрирован автомобиль, мы будем игнорировать.
В номере могут использоваться следующие буквы: "A", "B", "C", "E", "H", "K", "M", "O", "P", "T", "X", "Y" (эти буквы имеют схожие по написанию аналоги как в русском, так и в латинском алфавите). В этой задаче во входном файле будут использоваться буквы латинского алфавита.
Входной файл содержит одну строку, которая представляет собой корректный автомобильный номер.
№ | Входной файл (numbers.in ) |
Выходной файл (numbers.out ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 16 Мб | |
Выходной файл: | output.txt |
Любимая девушка одного математика сообщила ему номер своего телефона. Как истинный представитель своей профессии, он тут же забыл этот номер, однако успел заметить и запомнить целый ряд соотношений между цифрами. Дальнейшая судьба математика зависит от того, сможет ли он по этим соотношениям определить достаточно узкое множество подходящих номеров, чтобы успеть обзвонить их за приемлемое время.
В городе, где они живут, телефонные номера состоят из 6 цифр от 0 до 9 в любой комбинации (например, 000999 — правильный телефонный номер).
Между цифрами номера возможны 6 видов отношений: >, <, =, <=, >=, <>. Например, 2>5 означает, что вторая цифра в номере больше, чем пятая.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt |
Уравнение для пятиклассников представляет собой строку длиной 5 символов. Второй символ строки является либо знаком '+' (плюс) либо '-' (минус), четвёртый символ — знак '=' (равно). Из первого, третьего и пятого символов ровно два являются цифрами из диапазона от 0 до 9, и один — буквой x, обозначающей неизвестное.
Требуется решить данное уравнение относительно x.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | А. Кленин | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 4 Мб | |
Выходной файл: | output.txt |
Дана последовательность различных целых чисел A1, A2, …, AN. Требуется подсчитать количество таких троек (Ai, Aj, Ak), что i ≠ j, i ≠ k, j < k и Ai нацело делится как на Aj, так и на Ak. Например, в последовательности 1 3 2 4 6 таких троек четыре: 6 3 2, 6 1 3, 6 1 2, 4 1 2.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | А. Кленин, И. Олейников, И. Туфанов | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
В 3000 году при раскопках развалин вычислительного центра археологи обнаружили древнюю базу данных, в которой содержатся даты начала и окончания каких-то исторических событий. Работу по расшифровке осложняет тот факт, что древние программисты не могли договориться между собой, в каком порядке сохранять компоненты даты — день, месяц и год. Программисту будущего было поручено написать программу, определяющую порядок компонент.
По данным двум датам, состоящим из трёх чисел каждая, требуется найти порядок, в котором следует записать компоненты обеих дат, чтобы выполнялись следующие условия:
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
3 |
|
|