Автор: | VI Всероссийская командная олимпиада школьников по программированию | Ограничение времени: | 2 сек | |
Входной файл: | numbers.in | Ограничение памяти: | 64 Мб | |
Выходной файл: | numbers.out |
При расследовании дорожно-транспортных происшествий часто возникают проблемы с розыском автомобилей, водители которых покинули место происшествия.
Получение свидетельских показаний — непростая работа. Ситуация осложняется тем, что очень часто свидетели могут только приблизительно вспомнить номер автомобиля. При этом с большой вероятностью опрашиваемый может перепутать порядок цифр или букв в номере.
По полученному от свидетеля происшествия номеру, подсчитайте, сколько различных номеров может получиться из него перестановкой букв и/или цифр, а также выведите все такие номера.
Напомним, что автомобильные номера в России состоят из трех букв и трех цифр, упорядоченных следующим образом: буква, три цифры, затем две буквы. Фрагмент номера, который идентифицирует регион, в котором зарегистрирован автомобиль, мы будем игнорировать.
В номере могут использоваться следующие буквы: "A", "B", "C", "E", "H", "K", "M", "O", "P", "T", "X", "Y" (эти буквы имеют схожие по написанию аналоги как в русском, так и в латинском алфавите). В этой задаче во входном файле будут использоваться буквы латинского алфавита.
Входной файл содержит одну строку, которая представляет собой корректный автомобильный номер.
№ | Входной файл (numbers.in ) |
Выходной файл (numbers.out ) |
---|---|---|
1 |
|
|
Автор: | И. Бураго | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Между n спортсменами организуется соревнование по бегу. К сожалению, в распоряжении организаторов имеется стадион лишь с n − 1 беговой дорожкой, поэтому одновременно могут состязаться только n − 1 из n участников. По этой причине соревнования разбиваются на несколько забегов.
Правила соревнований требуют, чтобы каждый из бегунов:
Кроме того, некоторые пары спортсменов во избежание конфликтов нельзя выставлять на соседние дорожки в забеге. При этом у каждого из участников есть не более одного «неприятного» ему конкурента, и чувство антипатии является взаимным.
Требуется по заданному числу спортсменов, а также списку их антипатий, составить расписание забегов, удовлетворяющее требованиям организаторов. Гарантируется, что решение существует. При наличии нескольких решений, допустимо любое из них.
В первой строке входного файла находятся целые числа n m. В следующих m строках записаны пары чисел — номера спортсменов, которых нельзя ставить на соседние дорожки в одном забеге. Спортсмены нумеруются натуральными числами от 1 до n.
Первая строка выходного файла должна содержать число забегов r в предлагаемой схеме. Следующие r строк должны состоять из n − 1 числа — номеров спортсменов, выставляемых на дорожки в каждом из забегов.
2 ≤ n ≤ 100.
1 ≤ r ≤ 1000.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | StdAlg | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Дана строка, состоящая из N символов 0 и 1. Требуется построить последовательность из всех возможных строк длиной N, состоящих из 0 и 1, такую что:
Во входном файле содержится строка из символов 0 и 1
Выходной файл должен содержать 2N строк — искомую последовательность.
1 ≤ N ≤ 15
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | Жюри летних сборов 2009 | Ограничение времени: | 15 сек | |
Входной файл: | kinc.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | kinc.out |
Рассмотрим последовательность a1, …, an. Назовём её k-почтимонотонной, если среди неравенств a1 ≤ a2, a2 ≤ a3, …, an − 1 ≤ an ровно k неверных.
Даны числа 0 ≤ b1, b2, …, bm ≤ n, где b1 + b2 + … + bm = n. Найдите количество k-почтимонотонных последовательностей, в которой число 1 встречается b1 раз, 2 встречается b2 раз, …, m — bm раз.
Ответ требуется вывести по модулю 109 + 9.
В первой строке заданы два натуральных числа k и m. В следующей строке задано m натуральных чисел bi.
Выведите единственное число — ответ на поставленную задачу.
1 ≤ k ≤ 100;
1 ≤ m ≤ 26;
1 ≤ bi ≤ 100;
№ | Входной файл (kinc.in ) |
Выходной файл (kinc.out ) |
---|---|---|
1 |
|
|