Автор: | М. Спорышев, А. Кленин | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt | |||
Максимальный балл: | 100 |
Студент Вася решил приобрести себе новый гаджет. Стипендия у Васи небольшая, а гаджет — дорогой, поэтому Вася решил купить гаджет в кредит.
В магазине Васе объяснили правила предоставления кредита.
Поскольку на деньги, оставшиеся от выплаты по кредиту, Васе нужно питаться целый месяц, он хочет выбрать минимально возможную сумму ежемесячного платежа, позволяющую рассчитаться за кредит в установленный срок. Требуется написать программу, определяющую эту сумму.
Входной файла содержит целые числа N P C.
Выходной файл должен содержать единственное целое число — подходящий Васе ежемесячный платеж.
1 ≤ C ≤ 109; 0 ≤ P ≤ 109; 1 ≤ N ≤ 104
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
3 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 2 сек | |
Входной файл: | diploma.in | Ограничение памяти: | 64 Мб | |
Выходной файл: | diploma.out | |||
Максимальный балл: | 101 |
Когда Петя учился в школе, он часто участвовал в олимпиадах по информатике, математике и физике. Так как он был достаточно способным мальчиком и усердно учился, то на многих из этих олимпиад он получал дипломы. К окончанию школы у него накопилось N дипломов, причем, как оказалось, все они имели одинаковые размеры: W — в ширину и H — в высоту.
Сейчас Петя учится в одном из лучших российских университетов и живет в общежитии со своими одногруппниками. Он решил украсить свою комнату, повесив на одну из стен свои дипломы за школьные олимпиады. Так как к бетонной стене прикрепить дипломы достаточно трудно, то он решил купить специальную доску из пробкового дерева, чтобы прикрепить ее к стене, а к ней — дипломы. Для того чтобы эта конструкция выглядела более красиво, Петя хочет, чтобы доска была квадратной и занимала как можно меньше места на стене. Каждый диплом должен быть размещен строго в прямоугольнике размером W на H. Прямоугольники, соответствующие различным дипломам, не должны иметь общих внутренних точек.
Требуется написать программу, которая вычислит минимальный размер стороны доски, которая потребуется Пете для размещения всех своих дипломов.
Решения, правильно работающие только при W, H, N ≤ 1000, будут оцениваться в 40 баллов.
Входной файл содержит три целых числа: W, H, N
В выходной файл необходимо вывести ответ на поставленную задачу.
1 ≤ W, H, N ≤ 109
№ | Входной файл (diploma.in ) |
Выходной файл (diploma.out ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин, И. Бураго | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt | |||
Максимальный балл: | 20 |
На улице длиной в 100 метров установлено N фонарей высотой y1, y2, …, yN метров на расстоянии x1, x2, … xN метров от начала улицы. Форма отражателей такова, что свет каждого фонаря распространяется в пределах конуса с углом при вершине 90°.
Требуется определить яркость самого освещённого участка улицы, т.е. максимальное количество фонарей, освещающих один и тот же участок.№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | А. Жуплев | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt | |||
Максимальный балл: | 1 |
Перед началом шоссейно-кольцевых автомобильных гонок проводится квалификация, результаты которой определяют расположение автомобилей на старте гонки.
Во время квалификации каждый гонщик может проехать неограниченное число кругов, и минимальное время, за которое гонщик смог проехать круг, называется его лучшим временем.
Затем на старте гонки гонщики сортируются по возрастанию лучшего времени, в случае его равенства впереди будет тот, кто показал это время раньше.
Когда гонщик завершает очередной круг, в журнал записываются числа Bi и Ti — номер его машины и разность между временем, за которое он проехал этот круг, и текущим лучшим среди всех гонщиков временем. (Ti измеряется в тысячных долях секунды, T1 всегда равно 0). Если Ti < 0, то время, показанное этим гонщиком, становится лучшим.
Требуется определить результат квалификации по записям в журнале.
Входной файл содержит число N — общее количество кругов, сделанных всеми гонщиками в квалификации.
Далее содержатся N пар целых чисел Bi Ti — записи в журнале в хронологическом порядке.
Выходной файл должен содержать номера гоночных автомобилей, перечисленные в порядке расположения на старте гонки.
1 ≤ N ≤ 105
Разница между лучшим и худшим временем не превышает 109 тысячных секунды
1 ≤ Bi ≤ 106
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Входной файл: | input.txt | Ограничение времени: | 1 сек | |
Выходной файл: | output.txt | Ограничение памяти: | 64 Мб | |
Максимальный балл: | 10 |
Дан квадратный лабиринт, размером N × N, координаты точки входа и точки выхода. Определите минимальное расстояние от входа до выхода.
В выходном файле должно содержаться единственное число — минимальное расстояние. Лабиринт проходим.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Входной файл: | input.txt | Ограничение времени: | 1 сек | |
Выходной файл: | output.txt | Ограничение памяти: | 256 Мб | |
Максимальный балл: | 1 |
Дан неориентированный граф. Проверьте, является ли он деревом.
В первой строке входного файла заданы через пробел два целых числа n и m — количество вершин и рёбер в графе, соответственно. В следующих m строках заданы рёбра; i-я из этих строк содержит два целых числа ui и vi через пробел — номера концов i-го ребра. Граф не содержит петель и кратных рёбер.
В первой строке выходного файла выведите YES
, если граф является
деревом, и NO
в противном случае.
1 ≤ n ≤ 105
0 ≤ m ≤ 105
1 ≤ ui, vi ≤ n
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Author: | StdAlg | Time limit: | 1 sec | |
Input file: | input.txt | Memory limit: | 16 Mb | |
Output file: | output.txt | |||
Maximum points: | 1 |
You are to write a program that receives a weighted directed graph and finds distances from source vertex S to all other vertices. Distance from S to some vertex W is the minimal length of path going from S to W. Length of path is the sum of weights of its edges.
Vertices are numbered with integers from 1 to N.
No. | Input file (input.txt ) |
Output file (output.txt ) |
---|---|---|
1 |
|
|