Автор: | И. Туфанов, И. Олейников | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 16 Мб | |
Выходной файл: | output.txt |
Недавно в главном офисе картографической службы Ландшафтии случился пожар. Сгорел архив, хранящий таблицы с перепадами высот в различных регионах страны. Для восстановления этой информации требуется заново посчитать перепады высот по сохранившимся картам.
Карта региона представляет собой матрицу размером N x N клеток, в каждой клетке которой содержится средняя высота определённого района над уровнем моря. Максимальным перепадом высот называется максимальная величина, на которую отличаются средние высоты двух районов, соседних на карте по горизонтали или по вертикали. Требуется по карте региона определить максимальный перепад высот в нем.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | StdAlg | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt |
Требуется написать программу, которая получает невзвешенный неориентированный граф и выводит все его вершины в порядке увеличения расстояния от данной вершины S. Расстояние между вершинами A и B это длина кратчайшего пути из A в B. Если есть несколько вершин, находящихся на одном и том же расстоянии от вершины S, выведите их в произвольном порядке.
Входной файл содержит три целых числа N, M и S, где M — число рёбер, S — номер стартовой вершины. Вершины пронумерованы целыми числами от 1 до N. Каждая из следующих M строк содержит пару целых чисел — номера вершин, соединённых ребром.
Выходной файл должен содержать последовательность из N номеров вершин, упорядоченных по возрастанию расстояния от S. Если какая-то из вершин недостижима из S, выведите единственное число −1.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | Кленин А. | Ограничение времени: | 4 сек | |
Входной файл: | input.txt | Ограничение памяти: | 16 Мб | |
Выходной файл: | output.txt |
Лабиринт размером N x N клеток задан массивом символов. Символ '#' обозначеет стену, символ '.' — проход. Передвигаться по лабиринту можно шагами по горизонтали или вертикали, но не по диагонали.
Требуется найти длину кратчайшего пути между левым верхним и правым нижнем углами или определить, что пути не существует.
Первая строка входного файла содержит размер лабиринта N.
Следующие N строк содержат по N символов — описание лабиринта.
Выходной файл должен содержать единственное целое число — длину кратчайшего пути, либо −1, если пути не существует
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | И. Олейников, Т. Чистяков | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 8 Мб | |
Выходной файл: | output.txt |
Хакер Вася решил собрать карманный персональный компьютер (КПК). Согласно найденной им в Интернет инструкции компьютер собран правильно тогда, когда ток из каждой микросхемы может пройти в каждую и притом единственным путем.
Вася собрал компьютер, но сомневается в правильности сборки. Напишите программу, которая по данному Васей описанию схемы определит, какие провода нужно удалить, какие оставить и какие придется добавить, чтобы компьютер был собран правильно. Так как Васе не хочется выполнять много работы, он просит вас удалять и добавлять провода таким образом, чтобы суммарное число добавленных и удаленных проводов было минимально.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | Московская олимпиада для 7-9 кл., 2005 | Ограничение времени: | 3 сек | |
Входной файл: | e.in | Ограничение памяти: | 64 Мб | |
Выходной файл: | e.out |
Метрополитен состоит из нескольких линий метро. Все станции метро в городе пронумерованы натуральными числами от 1 до N. На каждой линии расположено несколько станций. Если одна и та же станция расположена сразу на нескольких линиях, то она является станцией пересадки и на этой станции можно пересесть с любой линии, которая через нее проходит, на любую другую (опять же проходящую через нее).
Напишите программу, которая по данному вам описанию метрополитена определит, с каким минимальным числом пересадок можно добраться со станции A на станцию B. Если данный метрополитен не соединяет все линии в одну систему, то может так получиться, что со станции A на станцию B добраться невозможно, в этом случае ваша программа должна это определить.
Во входном файле записано сначала число N — количество станций метро в городе. Далее записано число M — количество линий метро. Далее идет описание M линий. Описание каждой линии состоит из числа Pi — количество станций на этой линии и Pi чисел, задающих номера станций, через которые проходит линия (ни через какую станцию линия не проходит дважды).
В конце файла записаны два различных: числа A — номер начальной станции, и B — номер станции, на которую нам нужно попасть. При этом если через станцию A проходит несколько линий, то мы можем спуститься на любую из них. Так же если через станцию B проходит несколько линий, то нам не важно, по какой линии мы приедем.
№ | Входной файл (e.in ) |
Выходной файл (e.out ) |
---|---|---|
1 |
|
|
2 |
|
|
3 |
|
|
4 |
|
|
Автор: | А. Кленин | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Женя Борин учится в школе юных суперагентов. На занятии по избавлению от слежки Борин получил такое теоретическое задание:
Зал аэропорта на плане имеет вид прямоугольника шириной W и высотой H метров. Пол разделён на клетки размером 1 × 1 метр. Клетка в северо-западном углу имеет координаты (1, 1).
На западной и северной стене через каждые два метра укреплены видеокамеры, обозревающие горизонтальную или вертикальную полосу шириной в одну клетку до противоположной стены. Таким образом, клетки, хотя бы одна координата которых чётна, просматриваются видеокамерами. Если агент попадёт в поле зрения камеры, поднимется тревога.
В зале находится N пассажиров. Пассажиры двигаются по залу, перемещаясь за 1 секунду на одну клетку по горизонтали или вертикали. Если между камерой и агентом есть хотя бы один пассажир, то агент остаётся незамеченным этой камерой.
Агент находится в точке с координатами (1, ya) и желает попасть в точку с координатами (W, ya), не подняв тревоги и затратив не более T секунд. Требуется написать программу, которая определит необходимую последовательность перемещений агента по известным координатам и перемещениям пассажиров.
Произвольное количество пассажиров может находиться одновременно в одной клетке, однако агент не может находиться в одной клетке с пассажиром.
Первая строка входного файла содержит числа W H T ya N. Следующие N строк содержат значения xi yi pi, где xi, yi — координаты i-го пассажира в начальный момент времени, pi — строка из T символов, описывающая перемещения пассажиров в течении T секунд. Каждый символ равен "n", если пассажир перемещается на север, "s" — на юг, "w" — на запад, "e" — на восток, "z" — стоит на месте.
Выходной файл должен содержать строку длиной не более T символов, описывающую движение агента в том же формате, что и движения пассажиров, либо строку IMPOSSIBLE, если решения не существует. Если решений несколько, выведите любое из них.
1 ≤ W, H, T, N ≤ 100, ya и W — нечётные, 1 ≤ xi ≤ W, 1 ≤ yi, ya ≤ H
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | И. Олейников | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Отдел инновационных технологий фирмы "Division Computers" решил, что повысить производительность в написании программ можно, если использовать модульное программирование, т.е. когда когда каждый программист пишет свою часть отдельно.
Когда все программисты сдали в отдел свою работу, выяснилось, что некоторым модулям для правильного функционирования требуются другие модули, при этом если i-тому модулю нужен j-тый, то и наоборот j-тому модулю нужен i-тый. Вам, как одному из программистов отдела, поручено написать программу, которая по сведениям о связях между модулями определила бы, сколько минимальных программ можно из них собрать. Минимальной считается программа, которую нельзя разделить на более мелкие части.
Входной файл содержит числа N и M — соответственно число модулей и связей между ними, за которыми следуют M пар чисел ai aj, означающие, что i-тый и j-тый модули не могут функционировать друг без друга.
Выходной файл должен содержать число получившихся после сборки программ.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 32 Мб | |
Выходной файл: | output.txt |
Рельеф горного массива представлен матрицей размером NxN, с элементами, задающими высоту участков местности. Лыжник желает найти самый длинный спуск, т.е. такую строго убывающую последовательность соседних по вертикали или горизонтали элементов ai1,j1 > ai1,j1 > … > aiL,jL, что значение L (длина последовательности) — максимально возможное.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Author: | StdAlg | Time limit: | 1 sec | |
Input file: | input.txt | Memory limit: | 16 Mb | |
Output file: | output.txt |
You are to write a program that receives a weighted directed graph and finds distances from source vertex S to all other vertices. Distance from S to some vertex W is the minimal length of path going from S to W. Length of path is the sum of weights of its edges.
Vertices are numbered with integers from 1 to N.
No. | Input file (input.txt ) |
Output file (output.txt ) |
---|---|---|
1 |
|
|