Входной файл: | input.txt | Ограничение времени: | 5 сек | |
Выходной файл: | output.txt | Ограничение памяти: | 8 Мб |
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | A. Klenin | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt |
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | И. Туфанов, И. Олейников | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 16 Мб | |
Выходной файл: | output.txt |
Недавно в главном офисе картографической службы Ландшафтии случился пожар. Сгорел архив, хранящий таблицы с перепадами высот в различных регионах страны. Для восстановления этой информации требуется заново посчитать перепады высот по сохранившимся картам.
Карта региона представляет собой матрицу размером N x N клеток, в каждой клетке которой содержится средняя высота определённого района над уровнем моря. Максимальным перепадом высот называется максимальная величина, на которую отличаются средние высоты двух районов, соседних на карте по горизонтали или по вертикали. Требуется по карте региона определить максимальный перепад высот в нем.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин | Ограничение времени: | 4 сек | |
Входной файл: | input.txt | Ограничение памяти: | 200 Мб | |
Выходной файл: | output.txt |
Имеется линейная функция от двух аргументов f(x, y) = ax + by + c, причём коэффициенты a, b, c неизвестны. По данным N значениям f(x1, y1) = d1, ..., f(xN, yN) = dN требуется однозначно определить значение функции f(u, v) или указать, что это невозможно.
Обратите внимание, что однозначно восстанавливать саму функцию не требуется. Гарантируется, что функция f существует.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
3 |
|
|
Автор: | ? | Ограничение времени: | 2 сек | |
Входной файл: | monsters.in | Ограничение памяти: | 200 Мб | |
Выходной файл: | monsters.out |
В одной секретной лаборатории вывели новый вид маленьких монстров, размером чуть больше суслика. В ходе исследований ученые решили поставить следующий эксперимент. В центре комнаты устанавливается прямоугольный стол, поверхность которого разбита на N x M клеток размера 1x1. В начальный момент времени на некоторых его клетках располагаются монстры, смотрящие параллельно сторонам стола. По команде экспериментатора монстры начинают двигаться по прямой в ту сторону, в которую они смотрят, доходят до края стола и спрыгивают на пол. Там их собирает лаборант Петя и относит в клетку.
Рисунок 1. Монстры на столе для экспериментов |
Поскольку у монстров очень грязные лапки, они оставляют следы на тех клетках, на которых они побывали. Так как отмывать стол придется лаборанту Пете, его заинтересовал вопрос - в каком количестве клеток побывают монстры. Помогите ему решить эту сложную задачу.
Первая строка входного файла содержит числа M и N - размеры лабораторного стола. Следующая строка содержит число K - количество монстров. Следующие K строк содержат описания монстров - два целых числа и один символ из множества {N, E, S, W} - начальные координаты и направление соответствующего монстра (соответствие направлений и координат приведено на рисунке 1). Символ отделен от чисел ровно одним пробелом.
№ | Входной файл (monsters.in ) |
Выходной файл (monsters.out ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 200 Мб | |
Выходной файл: | output.txt |
Муравей находится в лесу с плоской поверхностью почвы в точке с координатами (x1, y1), и направляется в точку (x2, y2). В лесу растёт дерево, основание ствола которого имеет форму круга с центром в точке (xT, yT) и радиусом RT. Дерево, возможно, помешает муравью дойти до цели по прямой. В таком случае ему придётся обойти дерево вокруг ствола.
Требуется определить длину кратчайшего пути для муравья.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин | Ограничение времени: | 4 сек | |
Входной файл: | input.txt | Ограничение памяти: | 200 Мб | |
Выходной файл: | output.txt |
Текстовый редактор OLE (One-Line Editor) работает с текстом, состоящим ровно из одной строки строчных латинских букв. Редактор поддерживает следующие команды, длиной в один символ каждая:
a
… z
— вставить справа от текущей позиции курсора
указанный символ, переместить курсор на один символ вправоL
— переместить курсор на 1 символ влевоR
— переместить курсор на 1 символ вправоX
— удалить символ справа от позиции курсораТребуется по данному начальному состоянию строки, начальной позиции курсора и последовательности команд определить результат работы редактора.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | А. Кленин | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 200 Мб | |
Выходной файл: | output.txt |
Поле для игры в Lines представляет собой квадрат размером N x N клеток, в каждой клетке которого может находиться шарик. После хода игрока (состоящего в перемещении одного из шариков) все шарики, входящие в горизонтальные, вертикальные либо диагональные ряды длиной 5 и более, удаляются с поля.
По данной позиции сразу после хода игрока определить число удаляемых с поля шариков.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин | Ограничение времени: | 4 сек | |
Входной файл: | input.txt | Ограничение памяти: | 4 Мб | |
Выходной файл: | output.txt |
В данном двумерном целочисленном массиве a размером N × N требуется найти три элемента, сумма которых максимальна. При этом первый элемент должен быть соседним по горизонтали или вертикали со вторым, а второй — с третьим.
a1,1 a1,2 | … | a1,N |
a2,1 a2,2 | … | a2,N |
| … | |
aN,1 aN,2 | … | aN,N |
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин, Е. Иванова | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Петя часто ходит в Океанариум — особенно ему там нравится один большой аквариум, в котором плавают разнообразные маленькие рыбки. Пете очень интересно, сколько всего рыбок в аквариуме, но часть из них всё время скрывается за камнями и водорослями. Поэтому каждый раз, когда Петя подходил к аквариуму, он выписывал на листок названия всех рыбок, которые были ему видны.
Всего у Пети скопилось N таких листков. Требуется написать программу, которая по Петиным записям определит минимально возможное количество рыбок в аквариуме.
Например, если в первый раз Петя увидел трёх гуппи и одного вуалехвоста, а во второй раз — четырёх вуалехвостов, то всего в аквариуме не менее 7 рыбок.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | IX Всероссийская олимпиада школьников | Ограничение времени: | 5 сек | |
Входной файл: | input.txt | Ограничение памяти: | 200 Мб | |
Выходной файл: | output.txt |
Числа от 1 до N выписаны подряд в строку. Разрешается менять местами любые два числа, между которыми в строке стоят ровно P1, P2, ... или PM, чисел (числа P1, P2, ..., PM заданы).
Например, пусть N = 5, M = 2, P1 = 3, P2 = 2. Тогда после перестановки чисел в позициях 1 и 4 (между ними стоят 2 числа) и чисел в позициях 1 и 5 (между ними стоят 3 числа) получится по-следовательность 5, 2, 3, 1, 4.
Напишите программу, вычисляющую количество расположений чисел в строке, которые можно получить из начальной строки какой либо последовательностью перестановок.
В выходном файле OUTPUT.TXT должно находиться искомое число.
Частичные решения задачи (количество перестановок < 2 147 483 648) будут оцениваться исходя из 15 баллов. Естественно, в тестирующей системе частичные решения оцениваться не будут.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | Т. Кормен, Ч. Лейзерсон, Р. Ривест, Т. Чистяков | Ограничение времени: | 5 сек | |
Входной файл: | input.txt | Ограничение памяти: | 200 Мб | |
Выходной файл: | output.txt |
0 <= L <= 10^9
0 <= S <= 10^9
0 <= N <= 500000
0 <= Di <= L
Все числа целые.№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|