Задача 1. Дошкольная сортировка

Автор:А. Кленин   Ограничение времени:1 сек
Входной файл:input.txt   Ограничение памяти:256 Мб
Выходной файл:output.txt  

Условие

Когда юному программисту Васе было три года, он уже знал, что буквы бывают "маленькие" (a, b, c, ..., z) и "большие" (A, B, C, ... Z), но ещё не выучил порядок букв в алфавите.

Мама играла с Васей в игру: она выписывала последовательность маленьких и больших букв, и спрашивала, "в порядке ли они". Если в последовательности шли сначала только маленькие буквы, а потом только большие, Вася отвечал YES (как будущий программист, он уже начал учить английские слова). Если в последовательности маленькие и большие буквы были перемешаны, Вася отвечал NO.

Напишите программу, которая будет действовать как Вася.

Формат входного файла

Входной файл содержит строку из больших и маленьких латинских букв.

Формат выходного файла

Выходной файл должен содержать строку YES, если все маленькие буквы в исходной строке расположены левее всех больших, либо строку NO в противном случае.

Ограничения

Длина входной строки от 1 до 10 символов.

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
maMA
YES
2
pRograMma
NO
3
zzzz
YES
4
AA
YES

Problem 2. Heapsort

Author:Andrew Stankevich (original idea, text, solution)   Time limit:2 sec
Input file:heapsort.in   Memory limit:64 Mb
Output file:heapsort.out  

Statement

A well known algorithm called heapsort is a deterministic sorting algorithm taking O(n log n) time and O(1) additional memory. Let us describe ascending sorting of an array of different integer numbers.

The algorithm consists of two phases. In the first phase, called heapification, the array of integers to be sorted is converted to a heap. An array a[1…n] of integers is called a heap if for all 1 ≤ i ≤ n the following heap conditions are satisfied:

- if 2i ≤ n then a[i] > a[2i];

- if 2i + 1 ≤ n then a[i] > a[2i + 1].

We can interpret an array as a binary tree, considering children of element a[i] to be a[2i] and a[2i + 1]. In this case the parent of a[i] is a[i div 2], where i div 2 = floor(i / 2). In terms of trees the property of being a heap means that for each node its value is greater than the values of its children.

In the second phase the heap is turned into a sorted array. Because of the heap condition the greatest element in the heapified array is a[1]. Let us exchange it with a[n], now the greatest element of the array is at its correct position in the sorted array. This is called extract-max.

Now let us consider the part of the array a[1 ... n-1]. It may be not a heap because the heap condition may fail for i=1. If it is so (that is, either a[2] or a[3], or both are greater than a[1]) let us exchange the greatest child of a[1] with it, restoring the heap condition for i=1. Now it is possible that the heap condition fails for the position that now contains the former value of a[1]. Apply the same procedure to it, exchanging it with its greatest child. Proceeding so we convert the whole array a[1 ... n-1] to a heap. This procedure is called sifting down. After converting the part a[1 ... n-1] to a heap by sifting, we apply extract-max again, putting second greatest element of the array to a[n-1], and so on.

For example, let us see how the heap a=(5, 4, 2, 1, 3) is converted to a sorted array. Let us make the first extract-max. After that the array turns to (3, 4, 2, 1, 5). Heap condition fails for a[1] = 3 because its child a[2] = 4 is greater than it. Let us sift it down, exchanging a[1] and a[2]. Now the array is (4, 3, 2, 1, 5). The heap condition is satisfied for all elements, so sifting is over. Let us make extract-max again. Now the array turns to (1, 3, 2, 4, 5). Again the heap condition fails for a[1]; exchanging it with its greatest child we get the array (3, 1, 2, 4, 5) which is the correct heap. So we make extract-max and get (2, 1, 3, 4, 5). This time the heap condition is satisfied for all elements, so we make extract-max, getting (1, 2, 3, 4, 5). The leading part of the array is a heap, and the last extract-max finally gives (1, 2, 3, 4, 5).

It is known that heapification can be done in O(n) time. Therefore, the most time consuming operation in heapsort algorithm is sifting, which takes O(n * log (n)) time.

In this problem you have to find a heapified array containing different numbers from 1 to n, such that when converting it to a sorted array, the total number of exchanges in all sifting operations is maximal possible. In the example above the number of exchanges is 1+1+0+0+0 = 2, which is not the maximum. (5, 4, 3, 2, 1) gives the maximal number of 4 exchanges for n=5.

Input file format

Input file contains n.

Output file format

Output the array containing n different integer numbers from 1 to n, such that it is a heap, and when converting it to a sorted array, the total number of exchanges in sifting operations is maximal possible. Separate numbers by spaces.

Constraints

1 ≤ n ≤ 50000

Sample tests

No. Input file (heapsort.in) Output file (heapsort.out)
1
6
6 5 3 2 4 1

Задача 3. Золотая середина

Автор:И. Бураго   Ограничение времени:3 сек
Входной файл:input.txt   Ограничение памяти:64 Мб
Выходной файл:output.txt  

Условие

Центральным элементом набора из k чисел называется такой элемент, который после сортировки набора будет занимать в нём центральную позицию (то есть позицию номер k / 2, считая с единицы).

Числа добавляются в изначально пустой набор в заданном порядке. Требуется определить значения центрального элемента после добавления каждого числа.

Формат входного файла

Входной файла содержит количество чисел n, за которым следуют n целых чисел ai в порядке их добавления в набор.

Формат выходного файла

Выходной файл должен содержать n целых чисел — значения центрального элемента после каждого добавления.

Ограничения

1 ≤ n ≤ 106,  − 109 ≤ ai ≤ 109.

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
3
5 3 4
5 3 4
2
5
1 2 3 2 4
1 1 2 2 2

Задача 4. Топологическая сортировка

Автор:Т. Кормен, Ч. Лейзерсон, Р. Ривест, Т. Чистяков   Ограничение времени:7 сек
Входной файл:input.txt   Ограничение памяти:200 Мб
Выходной файл:output.txt  

Условие

Дан ориентированный ациклический граф. Требуется выполнить топологическую сортировку его вершин. При этом сначала требуется вывести группу вершин, в которые не входит ни одного ребра, затем вершины, в которые входят только рёбра из вершин первой группы, затем те, в тоторые входят только рёбра из вершин первой и второй групп и т.д. В каждой группе номера вершин должны быть отсортированы по возрастанию.

Формат входного файла

Сначала указывается количество вершин V и количество ребер E. Далее перечисляется E пар вершин (vi, vj), задающих ребра. Никакая пара вершин не встречается дважды.

Формат выходного файла

Необходимо перечислить V вершин в описанном порядке.

Ограничения

1 <= V <= 1000000, 0 <= E <= 1000000
1 <= vi <= V

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
6 5
2 3
4 6
3 1
5 1
2 5
2 4 3 5 6 1

Problem A. Altitude and visibility

Author:A. Klenin   Time limit:1 sec
Input file:input.txt   Memory limit:256 Mb
Output file:output.txt  

Statement

Consider a sequence of numbers a1, …, aN, representing heights. Let's say that element ai has a visibility radius d if ai ≥ aj for all j such that 1 ≤ j ≤ N and |i − j| < d.

You task is to find maximum di for every ai.

Input file format

Input file contains integer N followed by N integers ai.

Output file format

Output file must contain N integers di — maximum visibility for every ai. If maximum visibility radius for element ai is unlimited, output di = 0.

Constraints

1 ≤ N ≤ 106, 0 ≤ ai ≤ 109

Sample tests

No. Input file (input.txt) Output file (output.txt)
1
1
10
0 
2
6
1 5 2 2 1 4
1 0 1 2 1 4 

Problem B. Biconnectivity

Author:StdAlg   Time limit:1 sec
Input file:input.txt   Memory limit:64 Mb
Output file:output.txt  

Statement

You are to write a program that receives a connected undirected graph and finds all its articulation points, which are the vertices that, if removed, leave disconnected graph.

Input file format

Input file contains two integers N and M. Vertices are numbered with integer numbers from 1 to N. M is the number of edges. Each of next M lines contain pair of integers — numbers of vertices connected by an edge. There are no pairs of equal numbers.

Output file format

Output file must contain integer representing a quantity of articulation points, followed by numbers of corresponding vertices in arbitrary order.

Constraints

1 ≤ N, M ≤ 100000

Sample tests

No. Input file (input.txt) Output file (output.txt)
1
5 6
1 2
1 3
2 3
1 4
1 5
4 5
1 1

Problem C. Bucket sort (LETTERS ONLY)

Author:StdAlg   Time limit:3 sec
Input file:input.txt   Memory limit:256 Mb
Output file:output.txt  

Statement

You are to write a program that receives a sequence of words and sorts it in lexicographical order. Linear order on characters is given by ASCII codes.

Input file format

First line of input file contains integer N — the sequence length. Following N lines contain one word per line. Each word is exactly three letters long.

Output file format

Output file must consist of N lines, each containing one word from sorted sequence.

Constraints

0 &le; N &le; 1000000.

Sample tests

No. Input file (input.txt) Output file (output.txt)
1
4
KVN
ACM
FSB
GGG
ACM
FSB
GGG
KVN

Problem D. Caterpillar

Author:И. Блинов   Time limit:1 sec
Input file:Standard input   Memory limit:256 Mb
Output file:Standard output  

Statement

A caterpillar of length L crawls over rough terrain. Rough terrain can be represented as a one-dimensional array of N cells with different heights. A cell ai is called a downhill if ai > ai + 1. A cell ai is called an uphill if ai < ai + 1. Initially, the caterpillar occupies the first L cells.

In order to advance one cell, the caterpillar spends 1 second of time. However, if it occupies more downhills than uphills, and the head of the caterpillar is on the downhill, it immediately moves one cell to the right.

Determine after how many seconds the head of the caterpillar reaches the last cell.

Input format

The first line of the input file contains two integers L, N. The second line contains N integers ai.

Output format

The output must contain one integer — time after which the caterpillar reaches the last cell.

Constraints

1 ≤ ai, N, L ≤ 106, L ≤ N, ai ≠ ai + 1

Sample tests

No. Standard input Standard output
1
1 4
4 3 2 3
1
2
3 10
10 9 8 7 8 9 10 9 8 7
4

Problem E. Eulerian cycle

Author:StdAlg   Time limit:1 sec
Input file:input.txt   Memory limit:64 Mb
Output file:output.txt  

Statement

You are to write a program that receives an undirected connected graph and finds its Eulerian cycle.

Input file format

Input file contains two integers N, M. Vertices are numbered with integer numbers from 1 to N. M is the number of edges. Each of following M lines contains a pair of vertex numbers, connected by some edge. There is at most one edge connecting two vertices.

Output file format

Output file must contain a sequence of vertex numbers in order of traversal in an Eiler cycle. If there does not exist any Eiler cycle, output file must contain  − 1.

Constraints

1 ≤ N, M ≤ 100000

Sample tests

No. Input file (input.txt) Output file (output.txt)
1
3 3
1 2
2 3
3 1
1 2 3 1

Problem F. Fast Dijkstra

Author:StdAlg   Time limit:1 sec
Input file:input.txt   Memory limit:8 Mb
Output file:output.txt  

Statement

You are to write a program that receives a weighted directed graph and finds all distances from fixed vertex S to all other vertices. Distance from S to some vertex W is the minimal length of path going from S to W. Length of path is the sum of weights of its arcs.

Input file format

Input file contains two integers N, M and S. Vertices are numbered with integer numbers from 1 to N. S is the number of source vertex. M is the number of arcs. Each of next M lines contain three integers — numbers of starting and ending vertices of some arc and its weight respectively. All weights are positive. There is at most one arc connecting two vertices in every direction.

Output file format

Output file must contain N numbers. Each I-th number is the distance from vertex S to vertex I. If some vertices are not reachable from S, corresponding numbers must be &minus;1.

Constraints

1 &le; N, M &le; 100000 All weights are less or equal 1000.

Sample tests

No. Input file (input.txt) Output file (output.txt)
1
5 3 1
1 2 5
1 3 7
3 4 10
0 5 7 17 -1

Problem G. Floyd-Warshall

Author:StdAlg   Time limit:1 sec
Input file:input.txt   Memory limit:8 Mb
Output file:output.txt  

Statement

You are to write a program that finds shortest distances between all pairs of vertices in a directed weighted graph. Graph consists of N vertices, numbered from 1 to N, and M edges.

Input file format

Input file contains two integers N and M, followed my M triplets of integers ui vi wi — starting vertex, ending vertex and weight or the edge. There is at most one edge connecting two vertices in every direction. There are no cycles of negative weight.

Output file format

Output file must contain a matrix of size NxN. Element in the j-th column of i-th row mush be the shortest distance between vertices i and j. The distance from the vertex to itself is considered to be 0. If some vertex is not reachable from some other, there must be empty space in corresponding cell of matrix.

Constraints

0 &le; N &le; 100. All weights are less than 1000 by absolute value.

Sample tests

No. Input file (input.txt) Output file (output.txt)
1
3 3
1 2 5
1 3 10
2 3 2
0 5 7
  0 2
    0

Problem H. Ford-Bellman

Author:StdAlg   Time limit:1 sec
Input file:input.txt   Memory limit:8 Mb
Output file:output.txt  

Statement

You are to write a program that finds shortest distances from vertex S to all other vertices in a given directed weighted graph. Graph consists of N vertices, numbered from 1 to N, and M edges.

Input file format

Input file contains two integers N M S, followed my M triplets of integers ui vi wi — starting vertex, ending vertex and weight or the edge. There is at most one edge connecting any two vertices in every direction. There are no cycles of negative weight.

Output file format

Output file must contain a vector of N integers — distances from vertex S to other vertices. The distance from any vertex to itself is considered to be 0. If some vertex is not reachable from S, corresponding cell of the vector must contain empty space.

Constraints

0 &le; N, M &le; 1000. All weights are less than 1000 by absolute value.

Sample tests

No. Input file (input.txt) Output file (output.txt)
1
3 3 1
1 2 5
1 3 10
2 3 2
0 5 7

Problem J. SST for sparse graph

Author:StdAlg   Time limit:1 sec
Input file:input.txt   Memory limit:8 Mb
Output file:output.txt  

Statement

You are to write a program that receives a weighted undirected graph and finds length of its shortest spanning tree.

Input file format

Input file contains two integers N, M. Vertices are numbered with integer numbers from 1 to N. M is the number of edges. Each of next M lines contain three integers describing an edge — numbers of vertices, connected by an edge and its weight respectively. All weights are positive. There is at most one edge connecting two vertices.

Output file format

Output file must contain a signle integer number — length of the SST. If it is impossible to construct spanning tree, output file must contain &minus;1.

Constraints

1 &le; N, M &le; 100000 All weights are less or equal 1000.

Sample tests

No. Input file (input.txt) Output file (output.txt)
1
3 3
1 2 10
2 3 10
3 1 10
20

Задача K. Автомобильные номера

Автор:VI Всероссийская командная олимпиада школьников по программированию   Ограничение времени:2 сек
Входной файл:numbers.in   Ограничение памяти:64 Мб
Выходной файл:numbers.out  

Условие

При расследовании дорожно-транспортных происшествий часто возникают проблемы с розыском автомобилей, водители которых покинули место происшествия.

Получение свидетельских показаний — непростая работа. Ситуация осложняется тем, что очень часто свидетели могут только приблизительно вспомнить номер автомобиля. При этом с большой вероятностью опрашиваемый может перепутать порядок цифр или букв в номере.

По полученному от свидетеля происшествия номеру, подсчитайте, сколько различных номеров может получиться из него перестановкой букв и/или цифр, а также выведите все такие номера.

Напомним, что автомобильные номера в России состоят из трех букв и трех цифр, упорядоченных следующим образом: буква, три цифры, затем две буквы. Фрагмент номера, который идентифицирует регион, в котором зарегистрирован автомобиль, мы будем игнорировать.

В номере могут использоваться следующие буквы: "A", "B", "C", "E", "H", "K", "M", "O", "P", "T", "X", "Y" (эти буквы имеют схожие по написанию аналоги как в русском, так и в латинском алфавите). В этой задаче во входном файле будут использоваться буквы латинского алфавита.

Формат входного файла

Входной файл содержит одну строку, которая представляет собой корректный автомобильный номер.

Формат выходного файла

В первой строке выходного файла выведите число k — количество номеров, которые могут получиться из заданного перестановкой букв и/или цифр. В последующих k строках выведите все такие номера в произвольном порядке.

Примеры тестов

Входной файл (numbers.in) Выходной файл (numbers.out)
1
X772KX
9
X277XK
X277KX
X727XK
X727KX
X772XK
X772KX
K277XX
K727XX
K772XX

Задача M. Бутылка на всех

Автор:А. Шавлюгин   Ограничение времени:1 сек
Входной файл:input.txt   Ограничение памяти:256 Мб
Выходной файл:output.txt  

Условие

После урока физкультуры N школьников собрались в магазине, чтобы купить воды. Купив одну бутылку, они задумались: ведь в бутылке всего M глотков воды, а денег на еще одну бутылку у них нет!

Чтобы использовать бутылку максимально эффективно, школьники поступили следующим образом: каждый из них назвал целое неотрицательное число, показывающее, насколько сильно его мучает жажда. Когда ученик делает глоток из бутылки, его жажда уменьшается ровно в десять раз (с округлением вниз).

Необходимо определить, кто из жаждущих сколько глотков должен сделать, чтобы, когда вода закончится, их суммарная жажда стала минимально возможной.

Формат входного файла

Входной файл содержит целые числа N M, за которыми следуют N чисел ai — жажда i-го ученика.

Формат выходного файла

Выходной файл должен содержать одно число —– минимально возможную суммарную жажду.

Ограничения

1 ≤ N, M ≤ 105

0 ≤ ai ≤ 109

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
2 3
9 30
0
2
4 3
0 101 5 12
7

Задача N. Быстрая помощь

Автор:И. Лудов, А. Кленин   Ограничение времени:2 сек
Входной файл:input.txt   Ограничение памяти:64 Мб
Выходной файл:output.txt  

Условие

В городе В случилась катастрофа: неожиданно наступила зима. Чтобы облегчить судьбу жителей В, из города М решено направить N самолётов с тёплой одеждой.

Самолёты имеют различную скорость, так что самолёт номер i затратит на полёт в точности ai минут. Разгрузка любого самолёта в аэропорту В занимает L минут, после чего аэропорт готов к приёму следующего самолёта.

Аэропорт города М большой, и способен оправлять любое необходимое количество самолётов одновременно. Аэропорт города В, напротив, может принимать и разгружать самолёты только по одному.

Самолёты могут взлетать в любом порядке, но не должны обгонять друг друга в воздухе, т. е. если самолёт 1 взлетел раньше самолёта 2, то и приземлиться он должен раньше.

Требуется определить минимальное время в минутах, требуемое на перелёт и разгрузку всех самолётов.

Формат входного файла

Входной файла содержит целые числа N L, за которыми следуют N чисел ai — времена полёта в минутах.

Формат выходного файла

Выходной файл должен содержать число — минимальное время до окончания разгрузки последнего самолёта в минутах.

Ограничения

1 ≤ N ≤ 10000; 1 ≤ ai, L ≤ 1000

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
2 10
8 5
25

Задача O. Бюрократия

Автор:StdAlg   Ограничение времени:1 сек
Входной файл:input.txt   Ограничение памяти:8 Мб
Выходной файл:output.txt  

Условие

В некотором государстве различные официальные вопросы решаются с помощью мощного бюрократического аппарата. Программист Василий хочет получить разрешение на открытие своей фирмы, но он еще не знает с какими сложностями ему придется столкнуться! Для того, чтобы оформить разрешение на свою деятельность Василий должен получить определенный набор справок, каждую из которых выдает специально предназначенный для этого чиновник. Задача усложняется тем, что многие из этих госслужащих не дают свои справки просто так. А именно, для каждого из них известно, справки от каких других чиновников нужно иметь при себе, чтобы получить справку от этого. Чтобы помочь Василию, напишите программу, которая выдаст последовательность посещения чиновников, которая бы гарантировала, что никто из них ему не откажет.

Будем считать, что чиновники занумерованы целыми числами от 1 до N. Тот факт, что для посещения чиновника с некоторым номером, требуется справка от чиновника с другим номером, будем называть "условием".

Формат входного файла

Входной файл содержит числа N и M - количество чиновников и "условий" соответственно. Далее следуют M пар целых чисел (ai, bi), каждая из которых обозначает, что для посещения чиновника с номером bi нужно иметь справку от чиновника с номером ai. Пар, состоящих из двух одинаковых чисел, нет.

Формат выходного файла

Выведите в выходной файл N целых чисел - одну из возможных последовательностей посещения чиновников. Если такой последовательности не существует (бывает же и такое!), выведите  − 1.

Ограничения

1 ≤ N ≤ 100000; 0 ≤ M ≤ 100000

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
4 3
1 2
1 3
3 4
1 3 2 4

Задача P. Гражданская оборона

Автор:Восьмая всероссийская командная олимпиада школьников по программированию   Ограничение времени:2 сек
Входной файл:shelter.in   Ограничение памяти:256 Мб
Выходной файл:shelter.out  

Условие

Штаб гражданской обороны Тридесятой области решил обновить план спасения на случай ядерной атаки. Известно, что все n селений Тридесятой области находятся вдоль одной прямой дороги. Вдоль дороги также расположены m бомбоубежищ, в которых жители селений могут укрыться на случай ядерной атаки.

Чтобы спасение в случае ядерной тревоги проходило как можно эффективнее, необходимо для каждого селения определить ближайшее к нему бомбоубежище.

Формат входного файла

Первая строка входного файла содержит число n — количество селений. Вторая строка содержит n различных целых чисел, i-е из этих чисел задает расстояние от начала дороги до i-го селения.

Третья строка входного файла содержит число m — количество бомбоубежищ. Четвертая строка содержит m различных целых чисел, i-е из этих чисел задает расстояние от начала дороги до i-го бомбоубежища.

Формат выходного файла

Выведите в выходной файл n чисел — для каждого селения выведите номер ближайшего к нему бомбоубежища. Бомбоубежища пронумерованы от 1 до m в том порядке, в котором они заданы во входном файле.

Ограничения

1 ≤ n, m ≤ 100000

Все расстояния положительны и не превышают 109. Селение и убежище могут располагаться в одной точке.

Примеры тестов

Входной файл (shelter.in) Выходной файл (shelter.out)
1
4
1 2 6 10
2
7 3
2 2 1 1

Задача T. Конвертер графов

Автор:М. Спорышев   Ограничение времени:1 сек
Входной файл:input.txt   Ограничение памяти:256 Мб
Выходной файл:output.txt  

Условие

Вам требуется написать программу, принимающую на вход ориентированный граф в заданном формате и выводящую этот же граф в заданном (возможно, другом) формате. Граф может содержать петли, но не содержит кратных ребер.

Формат входного файла

Первая строка входного файла содержит два слова. Первое — название формата графа во входном файле. Второе — название формата, в котором граф необходимо вывести.

Начиная со второй строки в файле содержится описание графа в одном из следующих форматов

Формат выходного файла

Выходной файл должен содержать описание графа в требуемом формате.

Ограничения

1 ≤ N ≤ 1000

0 ≤ M ≤ N2

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
edges mat
3 4
1 2
2 3
1 3
2 2
3
0 1 1
0 1 1
0 0 0
2
mat lists
4
1 0 1 1
0 0 0 0
1 1 0 0
0 1 1 0
4
3 1 3 4
0
2 1 2
2 2 3

0.720s 0.009s 49