Автор: | И. Олейников | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Город соединяется с аэропортом автодорогой, имеющей N полос движения. Дорога состоит из K участков длиной 10 километров каждый. На каждом участке полосы разделены сплошной линией разметки (т.е. сворачивать с одной полосы на другую запрещено). На стыке участков разрешено перемещение на любую из соседних полос. В начале каждого участка на каждой полосе дороги поставлен знак ограничения скорости, при этом на разных полосах ограничения могут различаться.
Требуется вычислить минимальное время, за которое можно доехать из города в аэропорт, не нарушая правил дорожного движения. Считать, что скорость автомобиля изменяется мгновенно, и на смену полосы время не тратится. Начинать движение по дороге можно с любой полосы.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | И. Туфанов | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
В группе школьников, состоящей из N человек (пронумерованных от 1 до N), распостранено списывание домашних заданий. Почерк большинства школьников неразборчив, поэтому для каждого школьника известен набор его товарищей, почерк которых он может разобрать.
Чтобы не делать лишнюю работу, школьники договорились, что домашние задания будет выполнять минимально необходимое число школьников. У них будут списывать те, кто понимает их почерк. И так далее, пока у всей группы не будет готовых домашних заданий. Чтобы честно распределить работу, каждый день они выбирают другое множество выполняющих задание. Найдите максимальное количество дней, в течение которого этот уговор может действовать (т.е количество способов выбора школьников).№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | А. Кленин | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Строительная компания построила кирпичный забор, имеющий N столбов. Из-за недосмотра оказалось, что столбы имеют разную высоту — i-й столб состоит из ai кирпичей, лежащих вертикально один на другом. До приезда проверяющей комиссии осталось совсем немного времени, и за это время строители успеют положить либо убрать не более k кирпичей.
Требуется определить последовательность действий, в результате которой образуется как можно более длинный участок подряд идущих столбов одинаковой высоты — чтобы именно этот участок показать комиссии.
В выходной файл следует вывести числа s e m, где s, e — начало и конец максимального участка (1 ≤ s ≤ e ≤ N), m — количество потребовавшихся действий (0 ≤ m ≤ k). Затем вывести m чисел, di, которые обозначают, что на столб a|di| следует положить кирпич, если di > 0, либо снять кирпич, если di < 0.
Если существует несколько решений, дающих участки одинаковой длины, вывести любое из них.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | И. Туфанов | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
В группе школьников, состоящей из N человек (пронумерованных от 1 до N), распостранено списывание домашних заданий. Почерк большинства школьников неразборчив, поэтому для каждого школьника известен набор его товарищей, почерк которых он может разобрать.
Чтобы не делать лишнюю работу, школьники договорились, что домашние задания будет выполнять минимально необходимое число школьников. У них будут списывать те, кто понимает их почерк. И так далее, пока у всей группы не будет готовых домашних заданий. Чтобы честно распределить работу, каждый день они выбирают другое множество выполняющих задание. Найдите максимальное количество дней, в течение которого этот уговор может действовать (т.е количество способов выбора школьников).№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|