Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать класс на языке Python, который соответствует следующему интерфейсу.
class GradientOptimizer:
def __init__(self, oracle, x0):
self.oracle = oracle
self.x0 = x0
def optimize(self, iterations, eps, alpha):
pass
В конструктор принимаются два аргумента — оракул, с помощью которого можно получить градиент оптимизируемой функции, а также точку, с которой необходимо начать градиентный спуск.
Метод optimize
принимает максимальное число итераций для критерия остановки,
L2-норму градиента, которую можно считать оптимальной,
а также learning rate. Метод возвращает оптимальную точку.
Оракул имеет следующий интерфейс:
class Oracle:
def get_func(self, x): pass
def get_grad(self, x): pass
x
имеет тип np.array
вещественных чисел.
Код должен содержать только класс и его реализацию. Он не должен ничего выводить на экран.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать на языке Python класс GDM
, который описывает алгоритм градиентного спуска с моментом и имеет следующий интерфейс:
import numpy as np
class GDM:
'''Represents a Gradient Descent with Momentum optimizer
Fields:
eta: learning rate
alpha: exponential decay factor
'''
eta: float
alpha: float
def __init__(self, *, alpha: float = 0.9, eta: float = 0.1):
'''Initalizes `eta` and `alpha` fields'''
raise NotImplementedError()
def optimize(self, oracle: Oracle, x0: np.ndarray, *,
max_iter: int = 100, eps: float = 1e-5) -> np.ndarray:
'''Optimizes a function specified as `oracle` starting from point `x0`.
The optimizations stops when `max_iter` iterations were completed or
the L2-norm of the gradient at current point is less than `eps`
Args:
oracle: function to optimize
x0: point to start from
max_iter: maximal number of iterations
eps: threshold for L2-norm of gradient
Returns:
A point at which the optimization stopped
'''
raise NotImplementedError()
Параметрами алгоритма являются:
alpha
— скорость затухания момента,eta
— learning rate.oracle
— оптимизируемая функция,x0
— начальная точка,max_iter
— максимальное количество итераций,eps
— пороговое значение L2 нормы градиента.max_iter
количества итераций или при достижении точки, в которой L2 норма градиента меньше eps
.
Класс Oracle
описывает оптимизируемую функцию:
import numpy as np
class Oracle:
'''Provides an interface for evaluating a function and its derivative at arbitrary point'''
def value(self, x: np.ndarray) -> float:
'''Evaluates the underlying function at point `x`
Args:
x: a point to evaluate funciton at
Returns:
Function value
'''
raise NotImplementedError()
def gradient(self, x: np.ndarray) -> np.ndarray:
'''Evaluates the underlying function derivative at point `x`
Args:
x: a point to evaluate derivative at
Returns:
Function derivative
'''
raise NotImplementedError()
Код решения должен содержать только определение и реализацию класса.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать на языке Python класс NesterovAG
, который описывает алгоритм ускоренного градиента Нестерова и имеет следующий интерфейс
import numpy as np
class NesterovAG:
'''Represents a Nesterov Accelerated Gradient optimizer
Fields:
eta: learning rate
alpha: exponential decay factor
'''
eta: float
alpha: float
def __init__(self, *, alpha: float = 0.9, eta: float = 0.1):
'''Initalizes `eta` and `aplha` fields'''
raise NotImplementedError()
def optimize(self, oracle: Oracle, x0: np.ndarray, *,
max_iter: int = 100, eps: float = 1e-5) -> np.ndarray:
'''Optimizes a function specified as `oracle` starting from point `x0`.
The optimizations stops when `max_iter` iterations were completed or
the L2-norm of the current gradient is less than `eps`
Args:
oracle: function to optimize
x0: point to start from
max_iter: maximal number of iterations
eps: threshold for L2-norm of gradient
Returns:
A point at which the optimization stopped
'''
raise NotImplementedError()
Параметрами алгоритма являются:
alpha
— скорость затухания момента,eta
— learning rate.oracle
— оптимизируемая функция,x0
— начальная точка,max_iter
— максимальное количество итераций,eps
— пороговое значение L2 нормы градиента.max_iter
количества итераций или при достижении точки, в которой L2 норма градиента меньше eps
.
Класс Oracle
описывает оптимизируемую функцию
import numpy as np
class Oracle:
'''Provides an interface for evaluating a function and its derivative at arbitrary point'''
def value(self, x: np.ndarray) -> float:
'''Evaluates the underlying function at point `x`
Args:
x: a point to evaluate funciton at
Returns:
Function value
'''
raise NotImplementedError()
def gradient(self, x: np.ndarray) -> np.ndarray:
'''Evaluates the underlying function derivative at point `x`
Args:
x: a point to evaluate derivative at
Returns:
Function derivative
'''
raise NotImplementedError()
Код решения должен содержать только определение и реализацию класса.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать на языке Python класс AdaGrad
, который описывает алгоритм адаптивного градиентного спуска и имеет следующий интерфейс
import numpy as np
class AdaGrad:
'''Represents an AdaGrad optimizer
Fields:
eta: learning rate
epsilon: smoothing term
'''
eta: float
epsilon: float
def __init__(self, *, eta: float = 0.1, epsilon: float = 1e-8):
'''Initalizes `eta` and `epsilon` fields'''
raise NotImplementedError()
def optimize(self, oracle: Oracle, x0: np.ndarray, *,
max_iter: int = 100, eps: float = 1e-5) -> np.ndarray:
'''Optimizes a function specified as `oracle` starting from point `x0`.
The optimizations stops when `max_iter` iterations were completed or
the L2-norm of the gradient at current point is less than `eps`
Args:
oracle: function to optimize
x0: point to start from
max_iter: maximal number of iterations
eps: threshold for L2-norm of gradient
Returns:
A point at which the optimization stopped
'''
raise NotImplementedError()
Параметрами алгоритма являются:
eta
— learning rate,epsilon
— сглаживающий коэффициент.oracle
— оптимизируемая функция,x0
— начальная точка,max_iter
— максимальное количество итераций,eps
— пороговое значение L2 нормы градиента.max_iter
количества итераций или при достижении точки, в которой L2 норма градиента меньше eps
.
Класс Oracle
описывает оптимизируемую функцию
import numpy as np
class Oracle:
'''Provides an interface for evaluating a function and its derivative at arbitrary point'''
def value(self, x: np.ndarray) -> float:
'''Evaluates the underlying function at point `x`
Args:
x: a point to evaluate funciton at
Returns:
Function value
'''
raise NotImplementedError()
def gradient(self, x: np.ndarray) -> np.ndarray:
'''Evaluates the underlying function derivative at point `x`
Args:
x: a point to evaluate derivative at
Returns:
Function derivative
'''
raise NotImplementedError()
Код решения должен содержать только определение и реализацию класса.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать на языке Python класс RMSProp
, который описывает одноименный алгоритм и имеет следующий интерфейс
import numpy as np
class RMSProp:
'''Represents an RMSProp optimizer
Fields:
eta: learning rate
gamma: exponential decay factor
epsilon: smoothing term
'''
eta: float
gamma: float
epsilon: float
def __init__(self, *, eta: float = 0.1, gamma: float = 0.9, epsilon: float = 1e-8):
'''Initalizes `eta`, `gamma` and `epsilon` fields'''
raise NotImplementedError()
def optimize(self, oracle: Oracle, x0: np.ndarray, *,
max_iter: int = 100, eps: float = 1e-5) -> np.ndarray:
'''Optimizes a function specified as `oracle` starting from point `x0`.
The optimizations stops when `max_iter` iterations were completed or
the L2-norm of the gradient at current point is less than `eps`
Args:
oracle: function to optimize
x0: point to start from
max_iter: maximal number of iterations
eps: threshold for L2-norm of gradient
Returns:
A point at which the optimization stopped
'''
raise NotImplementedError()
Параметрами алгоритма являются:
eta
— learning rate,gamma
— коэффициент затухания,epsilon
— сглаживающий коэффициент.oracle
— оптимизируемая функция,x0
— начальная точка,max_iter
— максимальное количество итераций,eps
— пороговое значение L2 нормы градиента.max_iter
количества итераций или при достижении точки, в которой L2 норма градиента меньше eps
.
Класс Oracle
описывает оптимизируемую функцию
import numpy as np
class Oracle:
'''Provides an interface for evaluating a function and its derivative at arbitrary point'''
def value(self, x: np.ndarray) -> float:
'''Evaluates the underlying function at point `x`
Args:
x: a point to evaluate funciton at
Returns:
Function value
'''
raise NotImplementedError()
def gradient(self, x: np.ndarray) -> np.ndarray:
'''Evaluates the underlying function derivative at point `x`
Args:
x: a point to evaluate derivative at
Returns:
Function derivative
'''
raise NotImplementedError()
Код решения должен содержать только определение и реализацию класса.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать на языке Python класс Adam
, который описывает одноименный алгоритм и имеет следующий интерфейс
import numpy as np
class Adam:
'''Represents an Adam optimizer
Fields:
eta: learning rate
beta1: first moment decay rate
beta2: second moment decay rate
epsilon: smoothing term
'''
eta: float
beta1: float
beta2: float
epsilon: float
def __init__(self, *, eta: float = 0.1, beta1: float = 0.9, beta2: float = 0.999, epsilon: float = 1e-8):
'''Initalizes `eta`, `beta1` and `beta2` fields'''
raise NotImplementedError()
def optimize(self, oracle: Oracle, x0: np.ndarray, *,
max_iter: int = 100, eps: float = 1e-5) -> np.ndarray:
'''Optimizes a function specified as `oracle` starting from point `x0`.
The optimizations stops when `max_iter` iterations were completed or
the L2-norm of the gradient at current point is less than `eps`
Args:
oracle: function to optimize
x0: point to start from
max_iter: maximal number of iterations
eps: threshold for L2-norm of gradient
Returns:
A point at which the optimization stopped
'''
raise NotImplementedError()
Параметрами алгоритма являются:
eta
— learning rate,beta1
— коэффициент затухания первого момента,beta2
— коэффициент затухания второго момента,epsilon
— сглаживающий коэффициент.oracle
— оптимизируемая функция,x0
— начальная точка,max_iter
— максимальное количество итераций,eps
— пороговое значение L2 нормы градиента.max_iter
количества итераций или при достижении точки, в которой L2 норма градиента меньше eps
.
Класс Oracle
описывает оптимизируемую функцию
import numpy as np
class Oracle:
'''Provides an interface for evaluating a function and its derivative at arbitrary point'''
def value(self, x: np.ndarray) -> float:
'''Evaluates the underlying function at point `x`
Args:
x: a point to evaluate funciton at
Returns:
Function value
'''
raise NotImplementedError()
def gradient(self, x: np.ndarray) -> np.ndarray:
'''Evaluates the underlying function derivative at point `x`
Args:
x: a point to evaluate derivative at
Returns:
Function derivative
'''
raise NotImplementedError()
Код решения должен содержать только определение и реализацию класса.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать следующие функции на языке Python.
def linear_func(theta, x) # function value
def linear_func_all(theta, X) # 1-d np.array of function values of all rows of the matrix X
def mean_squared_error(theta, X, y) # MSE value of current regression
def grad_mean_squared_error(theta, X, y) # 1-d array of gradient by theta
theta
— одномерный np.array
x
— одномерный np.array
X
— двумерный np.array
. Каждая строка соответствует по размерности вектору theta
y
— реальные значения предсказываемой величины
Матрица X имеет размер M × N. M строк и N столбцов.
Используется линейная функция вида: hθ(x) = θ1 x1 + θ2 x2 + ... + θn xN
Mean squared error (MSE) как функция от θ: J(θ) = 1MM∑i = 1(yi − hθ(x(i)))2. Где x(i) — i-я строка матрицы X
Градиент функции MSE: ∇ J(θ) = { ∂ J∂ θ1, ∂ J∂ θ2, ..., ∂ J∂ θN}
X = np.array([[1,2],[3,4],[4,5]])
theta = np.array([5, 6])
y = np.array([1, 2, 1])
linear_func_all(theta, X) # --> array([17, 39, 50])
mean_squared_error(theta, X, y) # --> 1342.0
grad_mean_squared_error(theta, X, y) # --> array([215.33333333, 283.33333333])
Код должен содержать только реализацию функций.
Входной файл: | Стандартный вход | Ограничение времени: | 10 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать функцию на языке Python, которая находит линейную регрессию заданных векторов, используя метрику MSE.
def fit_linear_regression(X, y) # np.array of linear regression coefs
X
— двумерный np.array
. Каждая строка соответствует отдельному примеру.
y
— реальные значения предсказываемой величины
Код должен содержать только реализацию функций.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать на языке Python функцию, вычисляющую значение энтропии заданной выборки.
entropy(y) = − ∑v = set(y)p(v)log p(v)
где set(y) — множество уникальных значений вектора y.
import numpy as np
def entropy(y: np.ndarray) -> float:
"""Computes entropy value for labels `y`.
Arguments:
y: 1d array of integers, sample labels
Returns:
float, entropy value for labels `y`"""
pass
Функция принимает единственный параметр y
— одномерный np.array
, значения классов в обучающей выборке.
При решении задачи следует использовать натуральный логарифм.
Код должен содержать только реализацию функции. Запрещено пользоваться любыми готовыми реализациями вычисления функции entropy
.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать на языке Python функцию, вычисляющую значение gini impurity заданной выборки.
gini(y) = 1 − ∑v = set(y)p2(v)
где set(y) — множество уникальных значений вектора y.
import numpy as np
def gini(y: np.ndarray) -> float:
"""Computes gini impurity value for labels `y`.
Arguments:
y: 1d array of integers, sample labels
Returns:
float, gini impurity value for labels `y`"""
pass
y
— одномерный np.array
— значения классов в выборке
Код должен содержать только реализацию функции. Запрещено пользоваться любыми готовыми реализациями вычисления функции gini
.
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|
Входной файл: | Стандартный вход | Ограничение времени: | 10 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать следующие функцию на языке Python.
def tree_split(X, y, criterion) # col, row of best split
X
— двумерный np.array
— обучающая выборка
y
— одномерный np.array
— значения классов в обучающей выборке
criterion
— строковое значение — вид критерия 'var'
, 'gini'
или 'entropy'
tree_split
должен возвращать номер признака и номер значения из обучающей выборки, которое будет использоваться в качестве порогового
Таким образом, tree_split
возвращает наилучшее бинарное разделение по правилу вида xcol ≤ X[row, col]
Код должен содержать только реализацию функции.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Пусть имеется задача регрессии f(x) = a ⋅ x + b ≈ y. Требуется найти коэффициенты регрессии a, такие, что |{ai | ai ∈ a, ai = 0}| = k, 0 < k ⩽ |a| = m. При этом должно выполняться условие R2 = 1 − n∑i = 1(yi − f(Xi))2n∑i = 1(yi − y)2 ⩾ s. При решении задачи предполагается использование алгоритма Lasso.
Данные для обучения содержатся в файле. Качество модели будет рассчитано на скрытом наборе данных
Первая строка входных данных содержит натуральное число N — количество тестов. В следующих N блоках содержится описание тестов. Первая строка блока содержит целые числа n — количество примеров обучающей выборки, m — размерность пространства, k — необходимое количество нулевых коэффициентов, и вещественное число s — минимальное значение метрики R2. Следующие n строк содержат по m + 1 вещественному числу — координаты точки пространства и значение целевой переменной y.
Решение должно представлять собой текстовый файл содержащий N строк — коэффициенты a и b линейной регрессии разделённые символом пробел.
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется на языке Python реализовать методы точечного кроссовера.
Функция single_point_crossover(a, b, point)
выполняет одноточечный кроссовер, значения справа от точки кроссовера меняются местами.
Функция two_point_crossover(a, b, first, second)
выполняет двухточечный кроссовер, значения между точек кроссовера меняются местами.
Функция k_point_crossover(a, b, points)
выполняет k-точечный кроссовер, значения между каждой чётной парой точек меняются местами.
Функции должны иметь следующий интерфейс
import numpy as np
def single_point_crossover(a: np.ndarray, b: np.ndarray, point: int) -> tuple[np.ndarray, np.ndarray]:
"""Performs single point crossover of `a` and `b` using `point` as crossover point.
Chromosomes to the right of the `point` are swapped
Args:
a: one-dimensional array, first parent
b: one-dimensional array, second parent
point: crossover point
Return:
Two np.ndarray objects -- the offspring"""
raise NotImplemetnedError()
def two_point_crossover(a: np.ndarray, b: np.ndarray, first: int, second: int) -> tuple[np.ndarray, np.ndarray]:
"""Performs two point crossover of `a` and `b` using `first` and `second` as crossover points.
Chromosomes between `first` and `second` are swapped
Args:
a: one-dimensional array, first parent
b: one-dimensional array, second parent
first: first crossover point
second: second crossover point
Return:
Two np.ndarray objects -- the offspring"""
raise NotImplemetnedError()
def k_point_crossover(a: np.ndarray, b: np.ndarray, points: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
"""Performs k point crossover of `a` and `b` using `points` as crossover points.
Chromosomes between each even pair of points are swapped
Args:
a: one-dimensional array, first parent
b: one-dimensional array, second parent
points: one-dimensional array, crossover points
Return:
Two np.ndarray objects -- the offspring"""
raise NotImplemetnedError()
Код решения должен содержать импортируемые модули, определение и реализацию функций.
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
b = np.array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])
prep = lambda x: ' '.join(map(str, x))
print(*map(prep, single_point_crossover(a, b, 4)), '', sep='\n')
print(*map(prep, two_point_crossover(a, b, 2, 7)), '', sep='\n')
print(*map(prep, k_point_crossover(a, b, np.array([1, 5, 8]))), '', sep='\n')
|
|
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется на языке Python реализовать алгоритм Stochastic universal sampling.
Функция должна иметь следующий интерфейс
import numpy as np
def sus(fitness: np.ndarray, n: int, start: float) -> list:
"""Selects exactly `n` indices of `fitness` using Stochastic universal sampling alpgorithm.
Args:
fitness: one-dimensional array, fitness values of the population, sorted in descending order
n: number of individuals to keep
start: minimal cumulative fitness value
Return:
Indices of the new population"""
raise NotImplementedError()
Параметрами функции являются:
fitness
— одномерный массив значений функции приспособленности, отсортированный по убыванию,n
— количество особей, которых нужно оставить,start
— минимальное кумулятивное значение функции приспособленности.Функция возвращает список индексов выбранных особей
Код решения должен содержать импортируемые модули, определение и реализацию функции.
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
fitness = np.array([10, 4, 3, 2, 1])
print(*fitness[sus(fitness, 3, 6)])
|
|
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать следующие функцию на языке Python.
def knn_predict_simple(X, y, x, k) # array of pairs -- class and number of votes of neighbors
X
— двумерный np.array
— обучающая выборка
y
— реальные значения классов в обучающей выборке
x
— одномерный np.array
-- тестовый пример
k
— количество соседей, которые нужно рассматривать
Функция возвращает массив пар (класс, количество голосов) только для классов которые встречаются среди k ближайших соседей!
Для поиска ближайшего примера использовать евклидово расстояние.
Код должен содержать только реализацию функции.
Входной файл: | Стандартный вход | Ограничение времени: | 10 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Требуется реализовать функцию leave-one-out score на языке Python. Результат функции должен быть целочисленным, то есть его НЕ следует нормировать на размер выборки.
def loo_score(predict, X, y, k) # integer loo score for predict function
predict
— функция predict(X, y, x, k)
, обучающая некоторый алгоритм на выборке X, y
с параметром k
и дающая предсказание на примере x
X
— двумерный np.array
— обучающая выборка
y
— реальные значения классов в обучающей выборке
k
— количество соседей, которые нужно рассматривать
Код должен содержать только реализацию функции.
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Пусть на некотором наборе точек X = {xi}ni = 1, xi ∈ Rm задана функция f: Rm↦N. Требуется написать программу, вычисляющую значение border ratio α(x) = ∥x̂ − y∥2∥ x − y∥2, ∀ x ∈ X, где y = arg miny ∈ X, f(x) ≠ f(y)∥ x − y∥2, x̂ = arg minx̂ ∈ X, f(x) = f(x̂)∥x̂ − y∥2.
Первая строка входного файла содержит натуральные числа n, m — количество точек и размерность пространства соответственно. В следующих n строках содержится m вещественных чисел и одно натуральное число — координаты точки и значение функции в этой точке.
Выходной файл должен содержать n вещественных чисел — значения border ratio каждой точки с точностью не менее трёх знаков после запятой.
6 ⩽ n ⩽ 1500
2 ⩽ m ⩽ 50
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|
2 |
|
|
Входной файл: | Стандартный вход | Ограничение времени: | 1 сек | |
Выходной файл: | Стандартный выход | Ограничение памяти: | 512 Мб |
Пусть задан некоторый набор точек X = {xi}ni = 1, xi ∈ Rm. Требуется выполнить кластеризацию точек на k кластеров, используя наивный алгоритм KMeans.
Первая строка входных данных содержит натуральные числа n, m, k, t — количество точек, размерность пространства, количество кластеров и максимальное количество итераций соответственно. В каждой из следующих n строк содержится m вещественных чисел и одно натуральное число — координаты точки и начальное значение кластера точки. Значения кластеров нумеруются от 0 до k − 1.
Выходной данные должны содержать n натуральных чисел — номер кластера каждой точки.
6 ⩽ n ⩽ 1000
2 ⩽ m, k ⩽ 10
10 ⩽ t ⩽ 109
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|