Задача A. Дерево

Входной файл:input.txt   Ограничение времени:1 сек
Выходной файл:output.txt   Ограничение памяти:256 Мб

Условие

Дан неориентированный граф. Проверьте, является ли он деревом.

Формат входного файла

В первой строке входного файла заданы через пробел два целых числа n и m — количество вершин и рёбер в графе, соответственно. В следующих m строках заданы рёбра; i-я из этих строк содержит два целых числа ui и vi через пробел — номера концов i-го ребра. Граф не содержит петель и кратных рёбер.

Формат выходного файла

В первой строке выходного файла выведите YES, если граф является деревом, и NO в противном случае.

Ограничения

1 ≤ n ≤ 105

0 ≤ m ≤ 105

1 ≤ ui, vi ≤ n

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
3 2
1 2
1 3
YES
2
3 3
1 2
2 3
3 1
NO

Задача B. Модули

Автор:И. Олейников   Ограничение времени:1 сек
Входной файл:input.txt   Ограничение памяти:64 Мб
Выходной файл:output.txt  

Условие

Отдел инновационных технологий фирмы "Division Computers" решил, что повысить производительность в написании программ можно, если использовать модульное программирование, т.е. когда когда каждый программист пишет свою часть отдельно.

Когда все программисты сдали в отдел свою работу, выяснилось, что некоторым модулям для правильного функционирования требуются другие модули, при этом если i-тому модулю нужен j-тый, то и наоборот j-тому модулю нужен i-тый. Вам, как одному из программистов отдела, поручено написать программу, которая по сведениям о связях между модулями определила бы, сколько минимальных программ можно из них собрать. Минимальной считается программа, которую нельзя разделить на более мелкие части.

Формат входного файла

Входной файл содержит числа N и M — соответственно число модулей и связей между ними, за которыми следуют M пар чисел ai aj, означающие, что i-тый и j-тый модули не могут функционировать друг без друга.

Формат выходного файла

Выходной файл должен содержать число получившихся после сборки программ.

Ограничения

1 ≤ N ≤ 100000, 0 ≤ M ≤ 106

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
3 1
2 3
2

Задача C. Бюрократия

Автор:StdAlg   Ограничение времени:1 сек
Входной файл:input.txt   Ограничение памяти:256 Мб
Выходной файл:output.txt  

Условие

В некотором государстве различные официальные вопросы решаются с помощью мощного бюрократического аппарата. Программист Василий хочет получить разрешение на открытие своей фирмы, но он еще не знает с какими сложностями ему придется столкнуться! Для того, чтобы оформить разрешение на свою деятельность Василий должен получить определенный набор справок, каждую из которых выдает специально предназначенный для этого чиновник. Задача усложняется тем, что многие из этих госслужащих не дают свои справки просто так. А именно, для каждого из них известно, справки от каких других чиновников нужно иметь при себе, чтобы получить справку от этого. Чтобы помочь Василию, напишите программу, которая выдаст последовательность посещения чиновников, которая бы гарантировала, что никто из них ему не откажет.

Будем считать, что чиновники занумерованы целыми числами от 1 до N. Тот факт, что для посещения чиновника с некоторым номером, требуется справка от чиновника с другим номером, будем называть "условием".

Формат входного файла

Входной файл содержит числа N и M - количество чиновников и "условий" соответственно. Далее следуют M пар целых чисел (ai, bi), каждая из которых обозначает, что для посещения чиновника с номером bi нужно иметь справку от чиновника с номером ai. Пар, состоящих из двух одинаковых чисел, нет.

Формат выходного файла

Выведите в выходной файл N целых чисел - одну из возможных последовательностей посещения чиновников. Если такой последовательности не существует (бывает же и такое!), выведите 1.

Ограничения

1 ≤ N ≤ 100000; 0 ≤ M ≤ 100000

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
4 3
1 2
1 3
3 4
1 3 2 4

Задача D. Лабиринт

Входной файл:input.txt   Ограничение времени:1 сек
Выходной файл:output.txt   Ограничение памяти:64 Мб

Условие

Дан квадратный лабиринт, размером N × N, координаты точки входа и точки выхода. Определите минимальное расстояние от входа до выхода.

Формат входного файла

Во первой строке входного файла содержатся числа N, x0, y0, x1, y1. Далее следуют N строк по N символов в каждой — описание лабиринта.

Формат выходного файла

В выходном файле должно содержаться единственное число — минимальное расстояние. Лабиринт проходим.

Ограничения

0 ≤ N ≤ 100

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
4 1 1 4 1
..#.
..#.
..#.
....
9

Задача E. Суперагент

Автор:А. Кленин   Ограничение времени:2 сек
Входной файл:input.txt   Ограничение памяти:64 Мб
Выходной файл:output.txt  

Условие

Женя Борин учится в школе юных суперагентов. На занятии по избавлению от слежки Борин получил такое теоретическое задание:

Зал аэропорта на плане имеет вид прямоугольника шириной W и высотой H метров. Пол разделён на клетки размером 1 × 1 метр. Клетка в северо-западном углу имеет координаты (1, 1).

На западной и северной стене через каждые два метра укреплены видеокамеры, обозревающие горизонтальную или вертикальную полосу шириной в одну клетку до противоположной стены. Таким образом, клетки, хотя бы одна координата которых чётна, просматриваются видеокамерами. Если агент попадёт в поле зрения камеры, поднимется тревога.

В зале находится N пассажиров. Пассажиры двигаются по залу, перемещаясь за 1 секунду на одну клетку по горизонтали или вертикали. Если между камерой и агентом есть хотя бы один пассажир, то агент остаётся незамеченным этой камерой.

Агент находится в точке с координатами (1, ya) и желает попасть в точку с координатами (W, ya), не подняв тревоги и затратив не более T секунд. Требуется написать программу, которая определит необходимую последовательность перемещений агента по известным координатам и перемещениям пассажиров.

Произвольное количество пассажиров может находиться одновременно в одной клетке, однако агент не может находиться в одной клетке с пассажиром.

Формат входного файла

Первая строка входного файла содержит числа W H T ya N. Следующие N строк содержат значения xi yi pi, где xi, yi — координаты i-го пассажира в начальный момент времени, pi — строка из T символов, описывающая перемещения пассажиров в течении T секунд. Каждый символ равен "n", если пассажир перемещается на север, "s" — на юг, "w" — на запад, "e" — на восток, "z" — стоит на месте.

Формат выходного файла

Выходной файл должен содержать строку длиной не более T символов, описывающую движение агента в том же формате, что и движения пассажиров, либо строку IMPOSSIBLE, если решения не существует. Если решений несколько, выведите любое из них.

Ограничения

1 ≤ W, H, T, N ≤ 100, ya и W — нечётные, 1 ≤ xi ≤ W, 1 ≤ yi, ya ≤ H

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
7 6 20 3 2
2 1 eeeeewwwwwweeeeeewww
3 2 ssssnnnnnsssssnnnnns
zzzzzzzzzzzeeeeee
2
3 4 5 3 1
1 1 zzzzz
IMPOSSIBLE

Задача F. Расстояние от корня

Входной файл:input.txt   Ограничение времени:1 сек
Выходной файл:output.txt   Ограничение памяти:256 Мб

Условие

В заданном корневом дереве найдите вершины, максимально удалённые от корня. Расстоянием между вершинами считается количество рёбер в пути.

Формат входного файла

В первой строке задано n "--- количество вершин в дереве. В следующих n − 1 строках заданы вершины, являющиеся предками вершин 2, 3, , n. Вершина 1 является корнем дерева.

Формат выходного файла

В первой строке выведите максимальное расстояние от корня до остальных вершин дерева.

Во второй строке выведите, сколько вершин дерева находятся от корня на таком расстоянии.

В третьей строке выведите номера этих вершин через пробел в порядке возрастания.

Ограничения

1 ≤ n ≤ 105

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
3
1
1
1
2
2 3
2
3
1
2
2
1
3

Задача G. Водовод на о. Русский

Автор:И. Туфанов   Ограничение времени:2 сек
Входной файл:input.txt   Ограничение памяти:256 Мб
Выходной файл:output.txt  

Условие

При строительстве нового кампуса ДВФУ на о. Русском по дну пролива был проложен водовод с материка на остров. К сожалению, после завершения строительства все чертежи были утеряны, а строители разъехались. Чтобы восстановить карту водовода, были проведены гидрографические работы.

Была составлена прямоугольная карта залива, разбитая на ячейки. Левый столбец ячеек примыкает к материку, а правый — к острову. По результатам работ каждая ячейка была помечена символом '#' (по ячейке может проходить водовод) или '.' — водовод по ячейке точно не проходит.

Известно, что водовод представляет собой последовательность ячеек, имеющих общую сторону. Первая его ячейка находится в первом столбце клеток карты, последняя — в последнем. Водовод не проходит дважды через одну и ту же ячейку.

Дана карта, составленная по результатам работ. Необходимо определить, можно ли однозначно восстановить водовод по карте.

Формат входного файла

Первая строка входного файла содержит размеры карты — высоту H и ширину W. Далее следует H строк по W символов в каждой — карта.

Формат выходного файла

Если положение водовода может быть однозначно восстановлено, то выведите сначала слово YES, а затем набор чисел, содержащих описание самого водовода. Первое число в описании обозначает количество ячеек водовода, n, за которым следует n пар чисел вида ri, ci, обозначающих номер строки и номер столбца очередной ячейки (строки и столбцы нумеруются с единицы).

Если существует несколько способов восстановить положение водовода, то выведите сначала слово MULTIPLE, а затем два различных описания водовода в любом порядке. Если существует более двух вариантов, выведите любые два из них.

Если водовод восстановить невозможно, выведите единственное слово NO.

Ограничения

2 ≤ H, W ≤ 200

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
4 5
...##
##...
.####
...#.
YES
6  2 1  2 2  3 2  3 3  3 4  3 5 
2
3 6
#.###.
###.##
......
MULTIPLE
9  1 1  2 1  2 2  2 3  1 3  1 4  1 5  2 5  2 6
8  2 1  2 2  2 3  1 3  1 4  1 5  2 5  2 6
3
3 6
..###.
###.##
..###.
MULTIPLE
8  2 1  2 2  2 3  1 3  1 4  1 5  2 5  2 6
8  2 1  2 2  2 3  3 3  3 4  3 5  2 5  2 6
4
3 3
...
.##
...
NO

Problem H. Biconnectivity

Author:StdAlg   Time limit:1 sec
Input file:input.txt   Memory limit:64 Mb
Output file:output.txt  

Statement

You are to write a program that receives a connected undirected graph and finds all its articulation points, which are the vertices that, if removed, leave disconnected graph.

Input file format

Input file contains two integers N and M. Vertices are numbered with integer numbers from 1 to N. M is the number of edges. Each of next M lines contain pair of integers — numbers of vertices connected by an edge. There are no pairs of equal numbers.

Output file format

Output file must contain integer representing a quantity of articulation points, followed by numbers of corresponding vertices in arbitrary order.

Constraints

1 ≤ N, M ≤ 100000

Sample tests

No. Input file (input.txt) Output file (output.txt)
1
5 6
1 2
1 3
2 3
1 4
1 5
4 5
1 1

Задача I. Перестройка

Автор:Russian Code Cup 2012   Ограничение времени:2 сек
Входной файл:input.txt   Ограничение памяти:256 Мб
Выходной файл:output.txt  

Условие

В некоторой стране было ровно N городов и M дорог между ними. При этом в этой стране дорожная система была устроена следующим образом:

После смены власти новое правительство решило провести ряд реформ, среди которых есть реформа, затрагивающая дорожную систему страны. Эта реформа состоит из двух пунктов:

Кроме этого, для улучшения экономических связей между городами, правительство хочет, чтобы после принятия дорожной реформы можно было добраться из любого города в любой другой. При этом не гарантируется, что это требование выполнялось до реформы.

Теперь правительство задумалось о том, сколько существует способов провести реформу. Помогите ему.

Формат входного файла

Первая строка содержит два целых числа N и M. Следующие M строк содержат два числа ai, bi  — номера городов, которые соединяет i-я дорога.

Формат выходного файла

Выведите одно целое число  — количество способов провести реформу.

Ограничения

1 ≤ N ≤ 105

0 ≤ M ≤ 2 ⋅ 105

1 ≤ ai, bi ≤ N, ai ≠ bi


Задача J. Размещение данных

Автор:Центральная предметно-методическая комиссия   Ограничение времени:1 сек
Входной файл:data.in   Ограничение памяти:256 Мб
Выходной файл:data.out  

Условие

Телекоммуникационная сеть крупной IT-компании содержит n серверов, пронумерованных от 1 до n. Некоторые пары серверов соединены двусторонними каналами связи, всего в сети m каналов. Гарантируется, что сеть серверов устроена таким образом, что по каналам связи можно передавать данные с любого сервера на любой другой сервер, возможно с использованием одного или нескольких промежуточных серверов.

Множество серверов A называется отказоустойчивым, если при недоступности любого канала связи выполнено следующее условие. Для любого не входящего в это множество сервера X существует способ передать данные по остальным каналам на сервер X хотя бы от одного сервера из множества A.

На рис. 1 показан пример сети и отказоустойчивого множества из серверов с номерами 1 и 4. Данные на сервер 2 можно передать следующим образом. При недоступности канала между серверами 1 и 2  — с сервера 4, при недоступности канала между серверами 2 и 3  — с сервера 1. На серверы 3 и 5 при недоступности любого канала связи можно по другим каналам передать данные с сервера 4.

Рис. 1. Пример сети и отказоустойчивого множества серверов.

В рамках проекта группе разработчиков компании необходимо разместить свои данные в сети. Для повышения доступности данных и устойчивости к авариям разработчики хотят продублировать свои данные, разместив их одновременно на нескольких серверах, образующих отказоустойчивое множество. Чтобы минимизировать издержки, необходимо выбрать минимальное по количеству серверов отказоустойчивое множество. Кроме того, чтобы узнать, насколько гибко устроена сеть, необходимо подсчитать количество способов выбора такого множества, и поскольку это количество способов может быть большим, необходимо найти остаток от деления этого количества способов на число 109 + 7.

Требуется написать программу, которая по заданному описанию сети определяет следующие числа: k  — минимальное количество серверов в отказоустойчивом множестве серверов, c  — остаток от деления количества способов выбора отказоустойчивого множества из k серверов на число 109 + 7

Формат входного файла

Первая строка входного файла содержит целые числа n и m  — количество серверов и количество каналов связи соответственно.

Следующие m строк содержат по два целых числа и описывают каналы связи между серверами. Каждый канал связи задается двумя целыми числами: номерами серверов, которые он соединяет.

Гарантируется, что любые два сервера соединены напрямую не более чем одним каналом связи, никакой канал не соединяет сервер сам с собой, и для любой пары серверов существует способ передачи данных с одного из них на другой, возможно с использованием одного или нескольких промежуточных серверов.

Формат выходного файла

Выведите два целых числа, разделенных пробелом: k  — минимальное число серверов в отказоустойчивом множестве серверов, c  — количество способов выбора отказоустойчивого множества из k серверов, взятое по модулю 109 + 7

Ограничения

2 ≤ n ≤ 200000, 1 ≤ m ≤ 200000

Система оценки и описание подзадач

Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача Баллы Дополнительные ограничения Необходимые подзадачи
nm
1252 ≤ n ≤ 101 ≤ m ≤ 45
2272 ≤ n ≤ 200000m = n − 1
3282 ≤ n ≤ 10001 ≤ m ≤ 50001
4212 ≤ n ≤ 2000001 ≤ m ≤ 2000001, 2, 3

Описание подзадач и системы оценивания

По запросу сообщается результат окончательной проверки на каждом тесте.

Пояснение к примеру

В приведённом примере отказоустойчивыми являются следующие множества из двух серверов: {1, 3}, {1, 4}, {1, 5}.

Примеры тестов

Входной файл (data.in) Выходной файл (data.out)
1
5 5
1 2
2 3
3 4
3 5
4 5
2 3

0.154s 0.005s 31