Автор: | std.alg | Ограничение времени: | 2 сек | |
Входной файл: | Стандартный вход | Ограничение памяти: | 256 Мб | |
Выходной файл: | Стандартный выход |
Во входном файле задано число n (1 ≤ n ≤ 8). Выведите в выходной файл в лексикографическом порядке все перестановки чисел от 1 до n.
Первая строка входного файла содержит целое число n (1 ≤ n ≤ 8).
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|
Автор: | А. Жуплев, А. Кленин | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Крокодил Гена решил поступить в университет. Для поступления ему нужно пройти тест, состоящий из Q вопросов. На каждый из них можно ответить либо "Да", либо "Нет". Количество баллов, получаемых абитуриентом за тест, равно количеству данных им правильных ответов. Все абитуриенты проходят тест с одними и теми же вопросами.
Поскольку Гена не подготовился к тесту, он решил схитрить. Для этого он подговорил P шушанчиков, чтобы они прошли тест до него. Каждый шушанчик запомнил, как он отвечал на каждый из вопросов, и сколько баллов получил.
По этим данным Гена должен определить правильные ответы.
В первой строке входного файла содержатся числа P Q. Далее следует P описаний шушанчиков, по две строки на описание:
В выходном файле должна содержаться единственная строка, состоящая из Q символов + (ASCII 43) или - (ASCII 45) — правильные ответы к тесту. Если существует несколько вариантов правильных ответов, вывести любой из них. Так, во втором примере допустим также ответ -+++.
1 ≤ P ≤ 1000, 1 ≤ Q ≤ 15
Исходные данные таковы, что существует хотя бы один вариант решения.№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | A. Klenin | Ограничение времени: | 8 сек | |
Входной файл: | input.txt | Ограничение памяти: | 4 Мб | |
Выходной файл: | output.txt |
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | Методическая комиссия по информатике | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Заданы три числа: a, b, c. Необходимо выяснить, существуют ли такие числа x и y, что:
Входной файл содержит целые числа a b c.
Если искомые числа существуют, вывести в первую строку выходного файла слово YES, а во вторую — числа x y, разделённые пробелом. В противном случае вывести слово NO.
1 < a, b, c < 109
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Author: | A. Klenin | Time limit: | 5 sec | |
Input file: | input.txt | Memory limit: | 64 Mb | |
Output file: | output.txt |
When designing dialog forms for interactive programs, it is important to assign hot-keys (known also as accelerator keys) to each dialog element, so as to facilitate keyboard input.
For better mnemonics, hot-keys are assigned based on the letters of dialog elements' captions, usually favoring letters near the beginning of caption. Manual hot-keys distribution can be tedious and error-prone, as one must be careful not to assign same letter to different elements.
Your program will be given a list of captions. It must assign unique hot-keys to as many captions of possible. Each assigned hot-key must be a letter from the corresponding caption.
For each hot-key, position is the leftmost occurrence of the hot-key letter in the corresponding caption. From all solutions with the same numbers of hot-keys, your program must choose the one with minimal sum of hot-key positions. If there is still more than one optimal solution, output any of them.
Input file contains number of captions N followed by N lines with captions.
Output file must contain N lines with the same captions as in input. In those captions which have hot-key assigned, leftmost occurrence of hot-key letter must be preceded with '&' (ASCII 38).
1 ≤ N ≤ 10, all captions are from 1 to 10 characters in length and consist of small Latin letters.
No. | Input file (input.txt ) |
Output file (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | А. Кленин | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 16 Мб | |
Выходной файл: | output.txt |
Любимая девушка одного математика сообщила ему номер своего телефона. Как истинный представитель своей профессии, он тут же забыл этот номер, однако успел заметить и запомнить целый ряд соотношений между цифрами. Дальнейшая судьба математика зависит от того, сможет ли он по этим соотношениям определить достаточно узкое множество подходящих номеров, чтобы успеть обзвонить их за приемлемое время.
В городе, где они живут, телефонные номера состоят из 6 цифр от 0 до 9 в любой комбинации (например, 000999 — правильный телефонный номер).
Между цифрами номера возможны 6 видов отношений: >, <, =, <=, >=, <>. Например, 2>5 означает, что вторая цифра в номере больше, чем пятая.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | М. Спорышев | Ограничение времени: | 1 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt |
Однажды школьник Вася пришел в недавно построенное новое здание университета на мастер-класс по информатике. Здание имеет форму куба, составленного из одинаковых аудиторий также кубической формы. Каждой аудитории присвоены три номера x, y, z — порядковые номера по ширине, длине и высоте соответственно. Самая первая аудитория имеет номера 1, 1, 1. Из каждой аудитории можно перейти в любую соседних, имеющих с ней общую стену.
Вася находится в аудитории (xB, yB, zB). Мастер-класс пройдет в аудитории (xM, yM, zM). Вася решил посчитать, сколькими способами можно попасть из текущей аудитории в ту, где проходит мастер-класс, за наименьшее число переходов между аудиториями.
Однако Вася частенько прогуливает мастер-классы и не знает как это сделать, поэтому он отправил смс-ку вам, в надежде, что вы подскажете ему ответ.
Входной файл содержит 6 целых чисел xM yM zM xB yB zB.
Выходной файл должен содержать единственное целое число — количество способов. Так как ответ на вопрос Васи может быть слишком большим, выведите в его остаток от деления на 109 + 7.
1 ≤ xM, yM, zM, xB, yB, zB ≤ 1000.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|