Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | building.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | building.out | |||
Максимальный балл: | 100 |
Новое здание кампуса Университета Байтбурга имеет n этажей, пронумерованных снизу вверх от 1 до n. Комнаты студентов расположены в нескольких подъездах.
В каждом подъезде на этажах, номер которых кратен числу k, расположено по x комнат, а на остальных этажах расположено по y комнат.
Комнаты внутри каждого подъезда пронумерованы последовательными натуральными числами. Номера комнат на первом этаже имеют наименьшие значения в этом подъезде, затем следуют номера комнат на втором этаже, и так далее. Комнаты в первом подъезде пронумерованы, начиная с 1, в каждом следующем подъезде нумерация комнат начинается с числа, следующего после максимального номера комнаты в предыдущем подъезде.
На рис.1 показаны номера комнат в здании с n = 7 этажами, 3 подъездами, и параметрами k = 3, x = 2, y = 3.
Подъезд 1 | Подъезд 2 | Подъезд 3 | |
7 этаж | 17, 18, 19 | 36, 37, 38 | 55, 56, 57 |
6 этаж | 15, 16 | 34, 35 | 53, 54 |
5 этаж | 12, 13, 14 | 31, 32, 33 | 50, 51, 52 |
4 этаж | 9, 10, 11 | 28, 29, 30 | 47, 48, 49 |
3 этаж | 7, 8 | 26, 27 | 45, 46 |
2 этаж | 4, 5, 6 | 23, 24, 25 | 42, 43, 44 |
1 этаж | 1, 2, 3 | 20, 21, 22 | 39, 40, 41 |
Для организации расселения студентов администрация кампуса должна по номеру комнаты оперативно определять этаж, на котором она находится.
Требуется написать программу, которая по заданным числам n, k, x и y, а также по номерам комнат, определяет для каждой комнаты, на каком этаже она находится.
Первая строка входного файла содержит натуральные числа n, k, x и y. Соседние числа разделены ровно одним пробелом.
Вторая строка входного файла содержит натуральное число q — количество номеров комнат, для которых требуется определить этаж.
Третья строка содержит q целых чисел a1, a2, ..., aq — номера комнат. Можно считать, что в здании так много подъездов, что все комнаты с заданными номерами существуют.
Требуется вывести q чисел, по одному на строке. Для каждого номера комнаты во входном файле требуется вывести номер этажа, на котором она находится.
1 ≤ n ≤ 109, 1 ≤ x, y ≤ 109, 1 ≤ q ≤ 1000, 1 ≤ ai ≤ 1018
Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.
Подзадача | Баллы | Дополнительные ограничения | Необходимые подзадачи | |
---|---|---|---|---|
n, x, y | q, ai | |||
1 | 31 | 1 ≤ n ≤ 10, 1 ≤ x, y ≤ 10 | q = 1, 1 ≤ ai ≤ 100 | |
2 | 19 | 1 ≤ n ≤ 107, 1 ≤ x, y ≤ 109 | q = 1, 1 ≤ ai ≤ 107 | 1 |
3 | 16 | 1 ≤ n ≤ 109, 1 ≤ x, y ≤ 109, x = y | 1 ≤ q ≤ 1000, 1 ≤ ai ≤ 1018 | |
4 | 34 | 1 ≤ n ≤ 109, 1 ≤ x, y ≤ 109 | 1 ≤ q ≤ 1000, 1 ≤ ai ≤ 1018 | 1,2,3 |
По запросу сообщается результат окончательной проверки на каждом тесте.
№ | Входной файл (building.in ) |
Выходной файл (building.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | prizes.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | prizes.out | |||
Максимальный балл: | 100 |
Петр участвует в конкурсе, в котором разыгрывается N призов. Призы пронумерованы от 1 до N.
По итогам конкурса участник может набрать от 2 до N баллов. Если участник наберет K баллов, то он получит один из призов с номером от 1 до K.
Перед тем, как участник выберет свой приз, ведущий конкурса удаляет один из призов с номером от 1 до K. Затем участник может выбрать любой приз из оставшихся K − 1.
Список призов стал известен Петру. Он определил для каждого приза его ценность, для i-го приза она задается целым числом ai.
Требуется написать программу, которая по заданным ценностям призов определяет для каждого K от 2 до N, приз с какой максимальной ценностью гарантированно достанется Петру, если он наберет в конкурсе K баллов.
Первая строка входного файла содержит число N. Вторая строка этого файла содержит N целых чисел: a1, a2, …, aN.
Выходной файл должен содержать одну строку, содержащую N − 1 целых чисел: для каждого K от 2 до N должна быть выведена ценность приза, который достанется Петру, если он наберет K баллов.
2 ≤ N ≤ 100000; 1 ≤ ai ≤ 109
Баллы за каждую подзадачу начисляются только в случае, если все тесты успешно пройдены.
N ≤ 100
N ≤ 5000
N ≤ 100 000
По запросу сообщается результат окончательной проверки на каждом тесте.
№ | Входной файл (prizes.in ) |
Выходной файл (prizes.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | hall.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | hall.out | |||
Максимальный балл: | 100 |
Для проведения церемонии открытия олимпиады по информатике организаторы осуществляют поиск подходящего зала. Зал должен иметь форму прямоугольника, длина каждой из сторон которого является целым положительным числом.
Чтобы все участники церемонии поместились в зале, и при этом он не выглядел слишком пустым, площадь зала должна находиться в пределах от A до B квадратных метров, включительно.
Чтобы разместить на стенах зала плакаты, рассказывающие об успехах школьников на олимпиадах, но при этом не создать ощущения, что успехов слишком мало, периметр зала должен находиться в пределах от C до D метров, включительно.
Прежде чем сделать окончательный выбор, организаторы олимпиады решили просмотреть по одному залу каждого подходящего размера. Залы с размерами Y × Z и Z × Y считаются одинаковыми. Чтобы понять необходимый объем работ по просмотру залов организаторы задались вопросом, сколько различных залов удовлетворяют приведенным выше ограничениям.
Требуется написать программу, которая по заданным A, B, C и D определяет количество различных залов, площадь которых находится в пределах от A до B, а периметр — от C до D, включительно.
В примере ограничениям удовлетворяют залы следующих размеров: 1 × 2, 1 × 3, 2 × 2.
1 ≤ A ≤ B ≤ 1000, 4 ≤ C ≤ D ≤ 1000.
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
1 ≤ A ≤ B ≤ 109, 4 ≤ C ≤ D ≤ 109.
В этой подзадаче 25 тестов, каждый тест оценивается в 2 балла. Баллы за каждый тест начисляются независимо.
По запросу сообщается результат окончательной проверки на каждом тесте.
Входной файл содержит четыре разделенных пробелами целых числа: A, B, C и D.
Выходной файл должен содержать одно число — искомое количество залов.
1 ≤ A ≤ B ≤ 109, 4 ≤ C ≤ D ≤ 109
№ | Входной файл (hall.in ) |
Выходной файл (hall.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | space.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | space.out | |||
Максимальный балл: | 100 |
Для освоения Марса требуется построить исследовательскую базу. База должна состоять из N одинаковых модулей.
Каждый модуль представляет собой жилой отсек, который в основании имеет форму прямоугольника размером A × B метров.
Для повышения надежности модулей инженеры могут добавить вокруг каждого модуля дополнительный защитный слой. Толщина этого слоя должна составлять целое число метров, и все модули должны иметь одинаковую толщину защитного слоя.
Модуль с защитным слоем, толщина которой равна D метрам, будет иметь в основании форму прямоугольника размером (A + 2 D) × (B + 2 D) метров.
Все модули должны быть расположены на заранее подготовленном прямоугольном поле размером W × H метров.
При этом они должны быть организованы в виде регулярной сетки, их стороны должны быть параллельны сторонам поля, и модули должны быть ориентированы одинаково.
Требуется написать программу, которая по заданным количеству и размеру модулей, а также размеру поля для их размещения, определяет максимальную толщину дополнительного защитного слоя, который можно добавить к каждому модулю.
В первом примере можно установить дополнительный защитный слой толщиной 2 метра и разместить модули на поле, как показано на рисунке.
Во втором примере жилой отсек имеет в основании размер 5 × 5 метров, а поле — размер 6 × 6 метров.
Добавить дополнительный защитный слой к модулю нельзя.
Входной файл содержит пять разделенных пробелами целых чисел: N, A, B, W, H.
Гарантируется, что без дополнительного защитного слоя все модули можно разместить в поселении описанным образом.
Выходной файл должен содержать одно целое число: максимальную возможную толщину дополнительного защитного слоя.
Если дополнительный защитный слой установить не удастся, требуется вывести число 0.
1 ≤ N, A, B, W, H ≤ 1018
1 ≤ N ≤ 1000; 1 ≤ A, B, W, H ≤ 1000.
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
1 ≤ N ≤ 1000; 1 ≤ A, B, W, H ≤ 109.
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
1 ≤ N ≤ 109; 1 ≤ A, B, W, H ≤ 1018.
В этой подзадаче 8 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
1 ≤ N ≤ 1018; 1 ≤ A, B, W, H ≤ 1018.
В этой подзадаче 9 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
По запросу сообщается результат окончательной проверки на каждом тесте.
№ | Входной файл (space.in ) |
Выходной файл (space.out ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | prizes.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | prizes.out | |||
Максимальный балл: | 100 |
Алиса и Боб стали победителями телевикторины, и теперь им предстоит выбрать себе призы. На выбор предлагается n призов, пронумерованных от 1 до n.
Распределение призов происходит следующим образом. Организаторы телевикторины сообщают победителям целое положительное число k (1 ≤ k ≤ n / 3). Сначала Алиса выбирает себе любые k подряд идущих номеров призов. Потом Боб выбирает себе k подряд идущих номеров призов, при этом он не может выбирать номера, которые уже выбрала Алиса. После этого победители забирают выбранные ими призы.
Алиса хорошо знает Боба, и для каждого приза выяснила его ценность для Боба, которая является целым положительным числом. Алиса обижена на Боба и хочет выбрать свои призы так, чтобы суммарная ценность призов, которые достанутся Бобу, была как можно меньше. При этом Алису не волнует, какие призы достанутся ей.
Требуется написать программу, которая по информации о ценности призов и значению k определит, для какого минимального значения x Алиса сможет добиться того, чтобы Боб не смог выбрать призы с суммарной ценностью больше x.
В приведенном примере Алиса может, например, выбрать 4-й и 5-й призы. После этого для Боба оптимально выбрать 9-й и 10-й призы с суммарной ценностью 7.
В этой задаче три подзадачи. Баллы за подзадачу начисляются только в случае, если все тесты для данной подзадачи успешно пройдены.
3 ≤ n ≤ 50, 1 ≤ ai ≤ 105.
3 ≤ n ≤ 5000, 1 ≤ ai ≤ 105.
3 ≤ n ≤ 100 000, 1 ≤ ai ≤ 109.
По запросу сообщается результат окончательной проверки на каждом тесте.
Первая строка входного файла содержит два целых числа: n — общее количество призов и k — количество подряд идущих номеров призов, которое должен выбрать каждый из победителей.
Вторая строка содержит n целых положительных чисел: a1, a2, …, an. Для каждого приза указана его ценность для Боба.
Выходной файл должен содержать одно число — минимальное значение x, для которого Алиса сможет добиться того, чтобы Боб не смог выбрать призы с суммарной ценностью больше x.
3 ≤ n ≤ 100 000, 1 ≤ k ≤ n / 3, 1 ≤ ai ≤ 109.
№ | Входной файл (prizes.in ) |
Выходной файл (prizes.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | Стандартный вход | Ограничение памяти: | 512 Мб | |
Выходной файл: | Стандартный выход | |||
Максимальный балл: | 100 |
Группа юных археологов работает на раскопках здания древней библиотеки. Летом они обнаружили остатки старой книги и, изучив их, сделали следующие выводы.
Книга содержит несколько страниц, каждая страница содержит либо текст, либо иллюстрацию. Первые k страниц книги точно содержат иллюстрации. Все страницы книги пронумерованы, но номер страницы написан только на страницах, содержащих текст. Сумма номеров страниц с текстом равна s.
К сожалению, ни общее количество страниц в книге, ни количество иллюстраций установить не удалось. Тем не менее, юных археологов заинтересовал вопрос, какое минимальное количество иллюстраций могло быть в книге.
Например, если k = 1, а s = 8, то страницы книги могли иметь следующее содержание (буквой «Т» обозначена страница, содержащая текст, а буквой «И» — страница, содержащая иллюстрацию):
Минимальное количество иллюстраций равно 3.
Требуется написать программу, которая по заданным целым числам k и s определяет минимальное количество иллюстраций, которое могло быть в книге.
Первая строка входных данных содержит целое число k.
Вторая строка входных данных содержит целое число s.
Требуется вывести одно целое число — минимальное количество иллюстраций в книге.
0 ≤ k ≤ 109
k + 1 ≤ s ≤ 1012
Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.
Подзадача | Баллы | Дополнительные ограничения | Необходимые подзадачи | Информация о проверке | |
---|---|---|---|---|---|
k | s | ||||
1 | 15 | k = 0 | 1 ≤ s ≤ 200 | полная | |
2 | 20 | k = 0 | 1 ≤ s ≤ 1012 | 1 | полная |
3 | 30 | 0 ≤ k ≤ 199 | k + 1 ≤ s ≤ 200 | 1 | полная |
4 | 35 | 0 ≤ k ≤ 109 | k + 1 ≤ s ≤ 1012 | 1, 2, 3 | полная |
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | forest.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | forest.out | |||
Максимальный балл: | 100 |
Фермер Николай нанял двух лесорубов: Дмитрия и Федора, чтобы вырубить лес, на месте которого должно быть кукурузное поле. В лесу растут X деревьев.
Дмитрий срубает по A деревьев в день, но каждый K-й день он отдыхает и не срубает ни одного дерева. Таким образом, Дмитрий отдыхает в K-й, 2 K-й, 3 K-й день, и т.д.
Федор срубает по B деревьев в день, но каждый M-й день он отдыхает и не срубает ни одного дерева. Таким образом, Федор отдыхает в M-й, 2 M-й, 3 M-й день, и т.д.
Лесорубы работают параллельно и, таким образом, в дни, когда никто из них не отдыхает, они срубают A + B деревьев, в дни, когда отдыхает только Федор — A деревьев, а в дни, когда отдыхает только Дмитрий — B деревьев. В дни, когда оба лесоруба отдыхают, ни одно дерево не срубается.
Фермер Николай хочет понять, за сколько дней лесорубы срубят все деревья, и он сможет засеять кукурузное поле.
Требуется написать программу, которая по заданным целым числам A, K, B, M и X определяет, за сколько дней все деревья в лесу будут вырублены.
В приведенном примере лесорубы вырубают 25 деревьев за 7 дней следующим образом:
Внимание! Тест из примера не подходит под ограничения для подзадач 2 и 3, но решение принимается на проверку только в том случае, если оно выводит правильный ответ на тесте из примера. Решение должно выводить правильный ответ на тест даже, если оно рассчитано на решение только каких-либо из подзадач 2 и 3.
1 ≤ X ≤ 1000, 1 ≤ A, B ≤ 1000, 2 ≤ K, M ≤ 1000.
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
1 ≤ X ≤ 1018; X < K; X < M.
При решении этой подзадачи можно считать, что лесорубы не отдыхают. Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
1 ≤ X ≤ 1018.
Дополнительно к приведенным ограничениям выполняется условие K = M. Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
1 ≤ X ≤ 1018, 1 ≤ A, B ≤ 109, 2 ≤ K, M ≤ 1018.
В этой подзадаче 16 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
По запросу сообщается результат окончательной проверки на каждом тесте.
Входной файл содержит пять целых чисел, разделенных пробелами: A, K, B, M и X.
Выходной файл должен содержать одно целое число — искомое количество дней.
1 ≤ A, B ≤ 109, 2 ≤ K, M ≤ 1018, 1 ≤ X ≤ 1018
№ | Входной файл (forest.in ) |
Выходной файл (forest.out ) |
---|---|---|
1 |
|
|