Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | Стандартный вход | Ограничение памяти: | 512 Мб | |
Выходной файл: | Стандартный выход | |||
Максимальный балл: | 100 |
Газораспределительная система одного региона устроена следующим образом. Она содержит n узлов, пронумерованных от 1 до n, некоторые узлы соединены односторонними трубами. Узел с номером 1 соответствует центральному газохранилищу.
Система узлов описывается числами от p2, p3, … , pn. Для всех i от 2 до n узел с номером pi соединен односторонней трубой с узлом i, газ по этой трубе передается от узла pi к узлу i. Известно, что возможно доставить газ по трубам от центрального газохранилища до любого узла системы (возможно, с использованием промежуточных узлов). В системе используются трубы различных типов, тип трубы обозначается буквой английского алфавита от "a
" до "z
". Труба, соединяющая узел pi с узлом i, имеет тип ci.
Для проверки качества труб используется специальный робот. Он помещается в систему труб в одном из узлов и перемещается по трубам, каждый раз проверяя трубу, по которой он перемещается. Робот может перемещаться по трубам только в том же направлении, в котором по трубе передается газ. Совершив одно или несколько перемещений по трубам между узлами, робот извлекается из системы труб.
Каждый запуск робота должен соответствовать одной из m заданных спецификаций, пронумерованных от 1 до m. Спецификация с номером t представляет собой строку st, состоящую из строчных букв английского алфавита. Запуск соответствует спецификации st, если количество перемещений робота по трубам во время запуска совпадает с длиной st, и для всех j от 1 до длины st на j-м шаге робот перемещается по трубе, тип которой совпадает с st[j] — символом на позиции j в спецификации.
Если запуск робота соответствует спецификации с номером t, то стоимость этого запуска составляет wt. Оператору системы необходимо проверить все трубы, для этого можно запускать робота несколько раз. Каждый раз выбирается спецификация и маршрут робота по трубам, соответствующий выбранной спецификации. Необходимо проверить все трубы так, чтобы суммарная стоимость запусков робота для проверки качества труб была минимальна. Одну и ту же трубу можно проверять несколько раз.
Требуется написать программу, которая по описанию системы труб и списку спецификаций определяет минимальную суммарную стоимость запусков робота, в результате которых все трубы будут проверены, а также, по требованию, список необходимых для этого запусков.
В первой строке входных данных находятся три целых числа n, m и t — количество узлов системы труб, количество спецификаций запусков робота и параметр, указывающий требуется ли вывести список запусков робота, или только их минимальную суммарную стоимость.
В последующих (n − 1) строках содержится информация о трубах, (i − 1)-я из этих строк содержит разделенные пробелом значения pi и ci, где pi — целое число, задающее номер узла, из которого ведет труба в i-й узел, а ci — строчная буква английского алфавита, задающая тип этой трубы.
В последующих m строках содержится информация о спецификациях, i-я из этих строк содержит разделенные пробелом целое число wi — стоимость запуска робота в соответствии с этой спецификацией, и состоящую из строчных букв английского алфавита строку si — саму спецификацию.
Первая строка выходных данных должна содержать одно число — минимальную суммарную стоимость запусков робота, в результате которых все трубы будут проверены. Если проверить все трубы невозможно, требуется вывести −1.
Если t = 0, то больше ничего выводить не требуется.
Если t = 1 и проверить трубы возможно, то далее следует вывести список описаний запусков робота. В этом случае вторая строка выходных данных должна содержать число k — количество запусков робота, которое необходимо выполнить для проверки труб. В следующих k строках необходимо вывести по три целых числа ai, bi и ci — номер узла, в котором начинается запуск, номер узла, в котором заканчивается запуск, и номер спецификации, которой соответствует запуск.
Если оптимальных способов проверки несколько, требуется вывести любой из них.
1 ≤ n ≤ 500, 1 ≤ m ≤ 105, t равно 0 или 1
1 ≤ pi ≤ i − 1
1 ≤ wi ≤ 109. Суммарная длина строк si не превышает 106.
Система труб, заданная во втором примере входных данных, и оптимальный способ проверки всех труб для этого случая приведены на рисунке ниже.
Необходимо обратить внимание на следующие моменты:
ab
» нельзя использовать для проверки труб по маршруту 2→1→6, так как робот не может переместиться из узла 2 в узел 1.Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.
Подзадача | Баллы | Дополнительные ограничения | Необходимые подзадачи | Информация о проверке | ||
---|---|---|---|---|---|---|
n, m | Специальные условия | t | ||||
1 | 9 | 1 ≤ n ≤ 500 1 ≤ m ≤ 105 | Длина каждой строки si равна 1 | t = 0 | полная | |
2 | 10 | 1 ≤ n ≤ 500 1 ≤ m ≤ 105 | Для всех i выполнено pi = i − 1 | t = 0 | полная | |
3 | 22 | 1 ≤ n ≤ 15 1 ≤ m ≤ 105 | t = 0 | баллы | ||
4 | 20 | 1 ≤ n ≤ 500 1 ≤ m ≤ 500 | t = 0 | баллы | ||
5 | 19 | 1 ≤ n ≤ 500 1 ≤ m ≤ 105 | t = 0 | 1 − 4 | баллы | |
6 | 20 | 1 ≤ n ≤ 500 1 ≤ m ≤ 105 | t = 1 | 1 − 5 | баллы |
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | mining.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | mining.out | |||
Максимальный балл: | 100 |
Ведется проект по освоению планеты соседней звездной системы. Для добычи полезных ископаемых планируется направить на планету несколько партий роботов.
Участок поверхности планеты, на котором планируется добывать полезные ископаемые, представляет собой клетчатый прямоугольник размером w на h, клетки участка имеют координаты от (1, 1) до (w, h). В некоторых клетках участка находятся базы специалистов, в которые могут быть доставлены партии роботов. Всего на участке размещено s баз, и i-я база находится в клетке с координатами (xi, yi).
Каждая партия роботов характеризуется тремя параметрами: j-я партия доставляется на базу bj, содержит nj роботов и каждый робот партии обладает мобильностью mj.
Когда партия роботов доставляется на соответствующую базу, каждый робот этой партии перемещается по поверхности планеты от базы до некоторой клетки. Если мобильность робота равна m, он может не более m раз переместиться на одну из восьми соседних клеток, как показано на рис. 1.
Рис. 1. Возможные перемещения робота в восьми направлениях.
После того как роботы из всех доставленных партий размещаются на участке, они активируются и начинают добычу полезных ископаемых. В процессе перемещения в одной клетке может одновременно находиться произвольное количество роботов. Однако после активации в каждой клетке должно находиться не более q роботов.
Руководством проекта получена информация о t партиях роботов, которые могут быть последовательно отправлены на планету. После доставки всех партий роботов, учитывая их ограниченную мобильность, возможна ситуация, что не удастся разместить роботов на участке так, чтобы в каждой клетке оказалось не больше q роботов. Поэтому руководство должно выбрать k первых партий роботов, где 0 ≤ k ≤ t, которые будут полностью доставлены на соответствующие базы. После этого, если k < t, следует дополнительно принять z из nk + 1 роботов следующей, (k + 1)-й партии, 0 ≤ z < nk + 1.
Все полученные таким образом роботы должны с учетом ограничения на мобильность разместиться на участке таким образом, чтобы в каждой клетке было не более q роботов. После этого они будут активированы и начнут добычу полезных ископаемых. Разумеется, руководство проекта старается максимизировать количество роботов, которые будут доставлены на планету, поэтому, с учетом описанных ограничений, требуется максимизировать k, а затем максимизировать z.
Требуется написать программу, которая по размерам участка, числу q, описанию расположения баз, а также количеству запланированных партий роботов и их описанию определяет максимальное число k — количество партий роботов, и затем – максимальное число z – дополнительное количество роботов из (k + 1)-й партии, чтобы, доставив роботов на планету, их можно было разместить на участке таким образом, чтобы в каждой клетке оказалось не более q роботов.
Первая строка входного файла содержит числа w, h, s и q. Последующие s строк содержат по два целых числа xi, yi и описывают базы специалистов (1 ≤ xi ≤ w, 1 ≤ yi ≤ h).
Следующая строка содержит число t — количество партий роботов. Последующие t строк описывают партии роботов и содержат по 3 целых числа: bj, nj и mj (1 ≤ bj ≤ s, 1 ≤ nj ≤ w × h × q, 0 ≤ mj < max(w, h)).
Требуется вывести два числа: k и z, 0 ≤ k ≤ t. Если k = t, то z должно быть равно 0, иначе должно выполняться условие 0 ≤ z < nk + 1.
1 ≤ w, h ≤ 105, 1 ≤ s ≤ 4, 1 ≤ q ≤ 100, 1 ≤ t ≤ 100,
В приведенном примере описания входных данных следует полностью принять первую партию роботов и дополнительно принять 7 роботов из второй партии. На рис. 2 показано, как можно разместить этих роботов на участке, чтобы в каждой клетке было не более одного робота. Базы специалистов показаны кружками. Клетки, в которых окажутся роботы с базы 1, показаны вертикальной штриховкой, а клетки, в которых окажутся роботы с базы 2, показаны серым цветом.
Рис. 2. Возможное размещение роботов на участке в данном примере.
Баллы за каждую из подзадач 1–5 начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.
Тесты для подзадачи 6 запускаются только в случае, если все тесты подзадач 1–5 успешно пройдены. Каждый тест в подзадаче 6 оценивается независимо в 1 балл.
Подзадача | Баллы | Дополнительные ограничения | Необходимые подзадачи | ||
---|---|---|---|---|---|
w, h | s | q | |||
1 | 18 | 1 ≤ w, h ≤ 20 | s = 1 | q = 1 | |
2 | 12 | 1 ≤ w, h ≤ 20 | 1 ≤ s ≤ 2 | q = 1 | 1 |
3 | 9 | 1 ≤ w, h ≤ 20 | 1 ≤ s ≤ 3 | q = 1 | 1, 2 |
4 | 10 | 1 ≤ w, h ≤ 20 | 1 ≤ s ≤ 3 | 1 ≤ q ≤ 100 | 1, 2, 3 |
5 | 15 | 1 ≤ w, h ≤ 105 | s = 1 | 1 ≤ q ≤ 100 | 1 |
6 | 36 | 1 ≤ w, h ≤ 105 | 1 ≤ s ≤ 4 | 1 ≤ q ≤ 100 | 1, 2, 3, 4, 5 |
По запросу сообщаются баллы за каждую подзадачу.
№ | Входной файл (mining.in ) |
Выходной файл (mining.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 4 сек | |
Входной файл: | trains.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | trains.out | |||
Максимальный балл: | 100 |
Железная дорога Флатландии представляет собой прямую, вдоль которой расположены N станций. Будем называть участок железной дороги от некоторой станции до следующей перегоном.
Поезд следует от станции 1 до станции N, делая остановку на каждой станции. В поезде K мест, пронумерованных от 1 до K. На поезд продаются билеты, каждый билет характеризуется тремя числами: S, T и A. Такой билет позволяет проехать от станции S до станции T на месте A.
Иван планирует в один из дней летних каникул проехать на поезде от одной станции до другой. Он выяснил, что на поезд в этот день уже продано M билетов, и возможно уже нет мест, свободных на всех перегонах между интересующими его станциями. Билет от одной станции до другой на определенное место можно купить, только если это место свободно на всех перегонах между этими станциями.
Иван сообразил, что иногда все равно можно проехать от одной станции до другой, купив несколько билетов и пересаживаясь с одного места на другое на некоторых промежуточных станциях. Разумеется, пересаживаться с места на место неудобно, поэтому Иван хочет купить минимальное количество билетов, чтобы на каждом перегоне у него было свое место.
Иван еще не решил, от какой станции и до какой он поедет. Он записал Q вариантов поездки, и для каждого из них хочет узнать, какое минимальное число билетов ему придется купить, если он выберет этот вариант.
Требуется написать программу, которая по заданному описанию уже проданных билетов и вариантов поездки Ивана определяет для каждого варианта, какое минимальное количество билетов необходимо купить, чтобы совершить такую поездку.
Первая строка входного файла содержит числа N, M и K — количество станций, количество уже проданных билетов и количество мест в поезде. Последующие M строк содержат информацию о проданных билетах.
Каждая строка содержит три числа: si, ti и ai — номер станции, от которой куплен билет, номер станции, до которой куплен билет, и номер места, на которое куплен билет.
Гарантируется, что все билеты куплены таким образом, что ни на каком перегоне ни на какое место нет более одного билета.
Далее идет строка, которая содержит число Q. Последующие Q строк содержат описания вариантов поездки. Каждая строка содержит два числа: fj, dj — номер станции, от которой Иван хочет поехать в этом варианте, и номер станции, до которой он хочет поехать.
Выходной файл должен содержать Q чисел: для каждого варианта поездки требуется вывести минимальное количество билетов, которое необходимо купить Ивану, чтобы совершить соответствующую поездку. Если поездку совершить невозможно, то для этого варианта требуется вывести −1.
2 ≤ N ≤ 200 000; 0 ≤ M ≤ 200 000, 1 ≤ K ≤ 200 000
1 ≤ si < ti ≤ N; 1 ≤ ai ≤ K
1 ≤ Q ≤ 200 000; 1 ≤ fj < dj ≤ N
В этой задаче три подзадачи. Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи успешно пройдены.
Внимание! Тест из примера не подходит под ограничения для подзадач 1 и 2, но решение принимается на проверку только в том случае, если оно выводит правильный ответ на тесте из примера. Решение должно выводить правильный ответ на тест даже, если оно рассчитано на решение только каких-либо из подзадач 1 и 2.
N ≤ 100; M ≤ 100; K ≤ 100, Q = 1
N ≤ 200 000; M ≤ 200 000; K ≤ 200 000; Q = 1
N ≤ 200 000; M ≤ 200 000; K ≤ 200 000; Q ≤ 200 000
По запросу сообщаются баллы за каждую подзадачу.
На перегоне от 2-й до 3-й станции все места заняты, поэтому проехать от 1-й до 5-й станции невозможно. От 3-й до 5-й станции можно проехать, используя два билета: от 3-й до 4-й станции на место 2 и от 4-й до 5-й на место 1. От 4-й до 5-й станции можно проехать, используя один билет на место 1.
№ | Входной файл (trains.in ) |
Выходной файл (trains.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | search.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | search.out | |||
Максимальный балл: | 100 |
Для проведения чемпионата мира по поиску в сети Меганет организаторам необходимо ограничить доступ к некоторым адресам. Адрес в сети Меганет представляет собой строку, состоящую из имени сервера и имени раздела.
Имя сервера представляет собой строку, содержащую от одной до пяти частей включительно. Каждая часть представляет собой непустую строку, состоящую из строчных букв латинского алфавита. Части разделены точкой. Примеры корректных имен сервера: «a», «ab.cd», «abacaba», «a.b.c.d.e».
Имя раздела представляет собой строку, которая может быть либо пустой, либо содержать от одной до пяти частей включительно. Каждая часть начинается с символа «/», после которого следует одна или несколько строчных латинских букв. Примеры корректных имен разделов: «», «/a», «/aba», «/a/b/c/d/e».
Адрес формируется приписыванием имени раздела в конец имени сервера. Например, корректными адресами являются строки: «a», «aba/d/f/g/h», «a.b», «aba.caba/def/g», «c.d.e.f.g/a/b/c/d/e».
Для ограничения доступа к некоторым адресам сети Меганет организаторы чемпионата подготовили несколько фильтров. Фильтр, как и адрес, состоит из двух частей: фильтра сервера и фильтра раздела.
Фильтр сервера состоит из имени сервера, перед которым может также идти строка «*.». Если фильтр сервера представляет собой только имя сервера, то этому фильтру соответствует только сервер, имеющий точно такое же имя. Если фильтр сервера представляет собой строку «*.S», где S — имя сервера, то ему соответствуют сервера, удалением нуля или более начальных частей от имени которых можно получить строку S.
Аналогично, фильтр раздела представляет собой имя раздела, после которого может идти строка «/*». Фильтру раздела, который представляет собой просто имя раздела R, соответствуют только разделы, в точности совпадающие с R. Если фильтр раздела представляет собой строку «R/*», то ему соответствуют все разделы, удалением от имен которых нуля или более конечных частей можно получить строку R.
Адрес соответствует фильтру, если его имя сервера соответствует фильтру сервера, а его имя раздела соответствует фильтру раздела.
Примеры фильтров и соответствующих им адресов приведены в таблице ниже.
Фильтр | Примеры подходящих адресов |
---|---|
ab.c/d/e | ab.c/d/e |
*.a | a ax.a efg.a |
*.a/b/c | a/b/c x.a/b/c e.fg.a/b/c |
x.yz/a/* | x.yz/a x.yz/a/b/c x.yz/a/xyz |
*.a/* | a x.a e.fg.a a/b/c x.a/ddd/c e.fg.a/b/c/g/haha/i |
*.a/b/c/* | a/b/c x.a/b/c e.fg.a/b/c a/b/c/xxx e.fg.a/b/c/d/e/f |
Требуется написать программу, которая по заданному набору фильтров и списку адресов определяет для каждого адреса, какому числу фильтров соответствует этот адрес.
В первом примере в фильтрах не встречается символ «*», поэтому адрес соответствует фильтру только в случае полного совпадения.
Во втором примере следует обратить внимание на то, что фильтры могут повторяться, а также, что фильтрам вида «*.<сервер>/…» соответствуют также адреса, в которых часть имени сервера полностью совпадает с соответствующей частью фильтра. Аналогично фильтрам «…/<раздел>/*» соответствуют также адреса, в которых часть имени раздела полностью совпадает с соответствующей частью фильтра.
Внимание! Первый тест из примера не подходит под ограничение подзадачи 1, а второй тест из примера не подходит под ограничения подзадач 1 и 2. Тем не менее, решение принимается на проверку только в том случае, если оно выводит правильный ответ на оба теста из примера, даже если участник претендует на правильное решение только одной из указанных подзадач.
В этой задаче три подзадачи. В первой строке каждого теста после числа n указан номер подзадачи, для теста из примера указано число 0, в тестах первой подзадачи указано число 1, и т. д.
Внимание! Тест из примера не подходит под ограничение подзадачи 3. Тем не менее, решение задачи принимается на проверку только в том случае, если оно выводит правильный ответ на тесте из примера, даже если участник претендует на правильное решение только этой подзадачи.
В первой строке каждого теста после числа n указан номер подзадачи, для теста из примера указано число 0, в тестах первой подзадачи указано число 1, и т. д.
1 ≤ n ≤ 1000, 1 ≤ k ≤ 1000, p = 1.
Каждый фильтр начинается с «*.» и заканчивается на «/*».
В этой подзадаче 9 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
1 ≤ n ≤ 50 000, 1 ≤ k ≤ 50 000, p = 2.
Фильтры не содержат символов «*».
В этой подзадаче 5 тестов, каждый тест оценивается в 5 баллов. Баллы за каждый тест начисляются независимо.
1 ≤ n ≤ 50 000, 1 ≤ k ≤ 50 000, p = 3.
В этой подзадаче 12 тестов, каждый тест оценивается в 4 балла. Баллы за каждый тест начисляются независимо.
По запросу сообщаются баллы за каждую подзадачу.
Первая строка входного файла содержит два целых числа: n — количество фильтров и p — номер подзадачи.
Последующие n строк содержат фильтры, по одному на строке. Каждый фильтр удовлетворяет ограничениям, описанным выше.
Следующая строка содержит одно целое число k — количество адресов, которые необходимо проверить на соответствие фильтрам.
Последующие k строк содержат адреса, по одному на строке. Каждый адрес удовлетворяет ограничениям, описанным выше.
Длина каждой строки входного файла не превышает 50 символов. Общий размер входного файла не превышает 4 мегабайт.
Выходной файл должен содержать k целых чисел, по одному на строке — для каждого адреса необходимо вывести количество фильтров, которым соответствует этот адрес.
1 ≤ n ≤ 50 000, 0 ≤ p ≤ 3, 1 ≤ k ≤ 50 000.
№ | Входной файл (search.in ) |
Выходной файл (search.out ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 2 сек | |
Входной файл: | birch.in | Ограничение памяти: | 512 Мб | |
Выходной файл: | birch.out | |||
Максимальный балл: | 100 |
На краю деревни растет старая березовая аллея. Аллея имеет форму прямой полосы шириной W метров. Вдоль левой стороны аллеи растет N берез, а вдоль правой — M берез, при этом i-я береза с левой стороны аллеи находится на расстоянии ai метров от начала аллеи, а j-я береза с правой стороны — на расстоянии bj метров от начала аллеи.
Отдыхая в деревне прошедшим летом, один юный информатик обнаружил, что кору берез стали грызть зайцы. Чтобы защитить деревья от зайцев, мальчик решил окружить березы красной лентой (зайцы не любят красный цвет и не станут заходить на огражденную лентой территорию). К сожалению, в его распоряжении оказалась только лента длиной L метров, которую, к тому же, нельзя было разрезать. Единственное, что можно было делать в этом случае — окружить этой лентой как можно больше берез. При этом, чтобы сохранить аллею, необходимо окружить на каждой стороне аллеи хотя бы одну березу. Требуется написать программу, которая по заданной длине ленты, ширине аллеи и положению берез на ней определяет максимальное количество берез, которое можно окружить этой лентой. Считается, что березы представляются точками, толщиной берез и шириной ленты следует пренебречь.В первом примере можно, например, оградить березы способом, указанным на рисунке.
Во втором примере длины ленты недостаточно, чтобы оградить хотя бы по одной березе с каждой стороны.
Правильные решения для тестов, в которых 1 ≤ (N + M) ≤ 50, будут оцениваться из 30 баллов.
Правильные решения для тестов, в которых 1 ≤ (N + M) ≤ 500, будут оцениваться из 60 баллов.
Первая строка входного файла содержит два разделенных пробелом целых числа: длину ленты L и ширину аллеи W.
Вторая и третья строки описывают березы вдоль левой стороны аллеи. Вторая строка содержит число N — количество берез, а третья строка содержит N различных целых чисел a1, a2, …, aN, заданных по возрастанию. Четвертая и пятая строки описывают березы вдоль правой стороны аллеи. Четвертая строка содержит число M — количество берез, а пятая строка содержит M различных целых чисел b1, b2, …, bM, заданных по возрастанию.Выходной файл должен содержать одно целое число: максимальное количество берез, которое можно оградить заданной лентой. Гарантируется, что если максимальное число берез, которое можно оградить лентой длины L, равно X, то нет способа оградить (X + 1) березу лентой длины (L + 10−5).
1 ≤ L ≤ 2×105; 1 ≤ W ≤ 104; 1 ≤ N, M ≤ 2000; 0 ≤ ai, bi ≤ 105;
№ | Входной файл (birch.in ) |
Выходной файл (birch.out ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 2 сек | |
Входной файл: | game.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | game.out | |||
Максимальный балл: | 100 |
Сегодня на уроке математики Петя и Вася изучали понятие арифметической прогрессии. Арифметической прогрессией с разностью d называется последовательность чисел a1, a2, …, ak, в которой разность между любыми двумя последовательными числами равна d. Например, последовательность 2, 5, 8, 11 является арифметической прогрессией с разностью 3.
После урока Петя и Вася придумали новую игру с числами. Игра проходит следующим образом.
В корзине находятся n фишек, на которых написаны различные целые числа a1, a2, …, an. По ходу игры игроки выкладывают фишки из корзины на стол. Петя и Вася делают ходы по очереди, первым ходит Петя. Ход состоит в том, что игрок берет одну фишку из корзины и выкладывает ее на стол. Игрок может сам решить, какую фишку взять. После этого он должен назвать целое число d такое, что все числа на выбранных к данному моменту фишках являются членами некоторой арифметической прогрессии с разностью d, не обязательно последовательными. Например, если на столе выложены фишки с числами 2, 8 и 11, то можно назвать число 3, поскольку эти числа являются членами приведенной в начале условия арифметической прогрессии с разностью 3.
Игрок проигрывает, если он не может сделать ход из-за отсутствия фишек в корзине или из-за того, что добавление любой фишки из корзины на стол приводит к тому, что он не сможет подобрать соответствующее число d.
Например, если в корзине имеются числа 2, 3, 5 и 7, то Петя может выиграть. Для этого ему необходимо первым ходом выложить на стол число 3. После первого хода у него много вариантов назвать число d, например он может назвать d = 3. Теперь у Васи два варианта хода.
Заметим, что любой другой первый ход Пети приводит к его проигрышу. Если он выкладывает число 2, то Вася отвечает числом 7, и Петя не может выложить ни одной фишки. Если Петя выкладывает фишку с числом 5 или 7, то Вася выкладывает фишку с числом 2, и у Пети также нет допустимого хода.
Требуется написать программу, которая по заданному количеству фишек n и числам на фишках a1, a2, …, an определяет, сможет ли Петя выиграть вне зависимости от действий Васи, и находит все возможные первые ходы Пети, ведущие к выигрышу.
Первый пример рассматривается в тексте условия этой задачи. Во втором примере, какую бы фишку не выложил Петя первым ходом, Вася в ответ выкладывает другую фишку, и Петя не может сделать ход из-за отсутствия фишек в корзине.
Правильные решения для тестов, в которых 1 ≤ n ≤ 15, будут оцениваться из 40 баллов.
Первая строка входного файла содержит целое число n.
Вторая строка содержит n различных целых чисел a1, a2, …, an. Соседние числа разделены ровно одним пробелом.
Первая строка выходного файла должна содержать число k — количество различных первых ходов, которые может сделать Петя, чтобы выиграть. Если Вася может выиграть вне зависимости от действий Пети, строка должна содержать цифру 0. Во второй строке должно содержаться k различных целых чисел — все выигрышные числа. Будем называть число выигрышным, если, выложив в качестве первого хода фишку, содержащую это число, Петя может выиграть вне зависимости от действий Васи. Соседние числа в строке должны быть разделены ровно одним пробелом.
1 ≤ n ≤ 200
d ≥ 2
1 ≤ ai ≤ 105
№ | Входной файл (game.in ) |
Выходной файл (game.out ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 2 сек | |
Входной файл: | Стандартный вход | Ограничение памяти: | 512 Мб | |
Выходной файл: | Стандартный выход | |||
Максимальный балл: | 100 |
В научной лаборатории разрабатывается новая архитектура суперкомпьютера, позволяющая эффективно обрабатывать большие объемы данных.
Суперкомпьютер имеет 2k ячеек памяти, пронумерованных от 0 до 2k – 1. Отрезком [L, R] называется последовательность подряд идущих ячеек памяти с номерами от L до R, включительно.
Некоторые отрезки памяти являются корректными. Отрезок памяти [L, R] является корректным, если его длина (R − L + 1) равна 2i для некоторого i, а число L делится на 2i. Например, если k = 3, то ячейки памяти пронумерованы от 0 до 7, а корректными являются отрезки [0, 7], [0, 3], [4, 7], [0, 1], [2, 3], [4, 5], [6, 7], [0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6] и [7, 7].
Ключевой операцией в новой архитектуре является операция STORE
, которая за одно действие присваивает одно и то же значение всем ячейкам памяти некоторого корректного отрезка.
Исходно все ячейки памяти содержат значение 0. В лаборатории планируют запустить на суперкомпьютере программу обработки данных, но перед её запуском необходимо инициализировать память определенным образом. А именно: первые c1 ячеек памяти необходимо заполнить значениями v1, следующие c2 ячеек — значениями v2, и так далее, последние cn ячеек памяти необходимо заполнить значениями vn, где 1 ≤ vi ≤ m.
Ученым надо выяснить, какое минимальное количество операций STORE
необходимо выполнить, чтобы проинициализировать память требуемым образом.
Например, если k = 3, n = 3, m = 2, c1 = 1, v1 = 1, c2 = 2, v2 = 2, c3 = 5, v3 = 1, то итоговое содержимое памяти должно быть следующим: [1, 2, 2, 1, 1, 1, 1, 1]. В этом случае для инициализации памяти достаточно трех операций STORE
:
STORE
([0, 7], 1), после этой операции все ячейки памяти содержат значение 1;STORE
([1, 1], 2), после этой операции содержимое памяти [1, 2, 1, 1, 1, 1, 1, 1];STORE
([2, 2], 2) , после этой операции содержимое памяти [1, 2, 2, 1, 1, 1, 1, 1],
Заметим, что операцию STORE
([1, 2], 2) выполнить нельзя, потому что [1, 2] не является корректным отрезком памяти.
Требуется написать программу, которая по заданному содержимому памяти определяет минимальное количество операций STORE
, которое необходимо выполнить для инициализации памяти заданным образом.
Первая строка входных данных содержит три целых числа: k, n и m.
Следующие n строк содержат по два целых числа, i-я из этих строк содержит числа ci и vi.
Требуется вывести одно целое число – минимальное количество операций STORE
, которое необходимо выполнить для инициализации памяти заданным образом.
0 ≤ k ≤ 30, 1 ≤ n ≤ 105, 1 ≤ m ≤ 109
1 ≤ ci ≤ 2k, 1 ≤ vi ≤ m, c1 + c2 + … + cn = 2k
Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.
Подзадача | Баллы | Дополнительные ограничения | Необходимые подзадачи | Информация о проверке | ||
---|---|---|---|---|---|---|
k | n | m | ||||
1 | 15 | 0 ≤ k ≤ 3 | 1 ≤ n ≤ 8 | 1 ≤ m ≤ 8 | баллы | |
2 | 15 | 0 ≤ k ≤ 19 | 1 ≤ n ≤ 105 | 1 ≤ m ≤ 10 | 1 | баллы |
3 | 15 | 0 ≤ k ≤ 30 | 1 ≤ n ≤ 105 | 1 ≤ m ≤ 10 | 1, 2 | баллы |
4 | 10 | 0 ≤ k ≤ 30 | 1 ≤ n ≤ 105 | 1 ≤ m ≤ 50 | 1, 2, 3 | баллы |
5 | 15 | 0 ≤ k ≤ 19 | 1 ≤ n ≤ 105 | 1 ≤ m ≤ 109 | 1, 2 | баллы |
6 | 30 | 0 ≤ k ≤ 30 | 1 ≤ n ≤ 105 | 1 ≤ m ≤ 109 | 1 − 5 | баллы |
№ | Стандартный вход | Стандартный выход |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | qual.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | qual.out | |||
Максимальный балл: | 100 |
Взаимодействие сотрудников в некоторой компании организовано в виде иерархической структуры. Всего в компании работают n сотрудников. Каждому сотруднику присвоен уникальный номер от 1 до n, директору присвоен номер 1. У каждого сотрудника, кроме директора, есть ровно один непосредственный начальник. Непосредственный начальник сотрудника i имеет номер pi , причем pi < i.
Сотрудник x является подчиненным уровня 1 сотрудника y, если px = y. Для k > 1 сотрудник x является подчиненным уровня k сотрудника y, если сотрудник px является подчиненным уровня k − 1 сотрудника y.
У директора компании появилась возможность направить некоторых сотрудников на курсы повышения квалификации. Для этого он решил выбрать два числа L и R и направить на курсы всех сотрудников с номерами i, такими что L ≤ i ≤ R.
Перед тем, как выбрать числа L и R, директор получил m пожеланий от сотрудников компании, j-е пожелание задается двумя числами uj и kj и означает, что сотрудник uj просит отправить на курсы одного из своих подчиненных уровня kj. Для экономии средств директор хочет выбрать такие L и R, чтобы количество сотрудников, направленных на повышение квалификации, было минимальным возможным, но при этом все пожелания были выполнены.
Требуется написать программу, которая по заданным в компании отношениям начальник-подчиненный и пожеланиям сотрудников определяет такие числа L и R, что если отправить на курсы повышения квалификации всех сотрудников с номерами от L до R включительно, то все пожелания будут выполнены, а количество сотрудников, направленных на повышение квалификации, будет минимальным возможным. Если оптимальных пар чисел L, R будет несколько, требуется найти ту из них, в которой значение L минимально.
Первая строка входного файла содержит число n — количество сотрудников компании. Вторая строка содержит (n − 1) чисел: p2, p3, …, pn (1 ≤ pi ≤ i) — номера непосредственных начальников сотрудников.
Третья строка содержит число m — количество пожеланий от сотрудников.
Последующие m строк задают пожелания сотрудников и содержат по два целых числа uj, kj (1 ≤ uj < n, 1 ≤ kj < n, гарантируется, что у сотрудника uj есть хотя бы один подчиненный уровня kj).
Необходимо вывести два искомых числа: L и R. Если оптимальных пар (L, R) несколько, требуется вывести ту, в которой значение L минимально.
2 ≤ n, m ≤ 200 000
Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.
Подзадача | Баллы | Ограничения | Необходимые подзадачи | |
---|---|---|---|---|
n | Дополнительные условия | |||
1 | 19 | 2 ≤ n, m ≤ 50 | ||
2 | 25 | 2 ≤ n, m ≤ 3000 | 1 | |
3 | 21 | 2 ≤ n, m ≤ 200 000 | для всех i выполнено pi = i − 1 | |
4 | 35 | 2 ≤ n, m ≤ 200 000 | 1, 2, 3 |
По запросу сообщаются баллы за каждую подзадачу.
На повышение квалификации будут направлены сотрудники с номерами 3, 4, 5 и 6. Сотрудник с номером 3 является подчиненным уровня 1 сотрудника с номером 1, сотрудник с номером 4 — подчиненным уровня 2 сотрудника с номером 1, а сотрудник с номером 6 — подчиненным уровня 1 сотрудника с номером 3.
№ | Входной файл (qual.in ) |
Выходной файл (qual.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 2 сек | |
Входной файл: | sequence.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | sequence.out | |||
Максимальный балл: | 100 |
Цикл лекций в университете Флатландии посвящен изучению последовательностей.
Профессор называет последовательность целых чисел a1, a2, …, aN гармоничной, если каждое число, кроме a1 и aN, равно сумме соседних: a2 = a1 + a3, a3 = a2 + a4, …, aN − 1 = aN − 2 + aN. Например, последовательность [1, 2, 1, −1] является гармоничной, поскольку 2 = 1 + 1, и 1 = 2 + (−1).
Рассмотрим последовательности равной длины: A = [a1, a2, …, aN] и B = [b1, b2, …, bN]. Расстоянием между этими последовательностями будем называть величину N(A, B) = |a1 − b1| + |a2 − b2| + ⋯ + |aN − bN|. Например, d([1, 2, 1, −1], [1, 2, 0, 0]) = |1 − 1| + |2 − 2| + |1 − 0| + |−1 − 0| = 0 + 0 + 1 + 1 = 2.
В конце лекции профессор написал на доске последовательность из N целых чисел B = [b1, b2, …, bN] и попросил студентов в качестве домашнего задания найти гармоничную последовательность A = [a1, a2, …, aN], такую, что d(A, B) минимально. Чтобы облегчить себе проверку, профессор просит написать в качестве ответа только искомое минимальное расстояние d(A, B).
Требуется написать программу, которая по заданной последовательности B определяет, на каком минимальном расстоянии от последовательности B найдется гармоничная последовательность A.
Первая строка входного файла содержит целое число N — количество элементов в последовательности.
Вторая строка содержит n целых чисел b1, b2, …, bN.
Выходной файл должна содержать одно целое число: минимальное возможное расстояние от последовательности во входном файле до гармоничной последовательности.
3 ≤ N ≤ 300 000; −109 ≤ bi ≤ 109
В приведенном примере оптимальной является, например, гармоничная последовательность [1, 2, 1, −1].
В этой задаче пять подзадач. Баллы за подзадачу начисляются только в случае, если все тесты для данной подзадачи пройдены.
Внимание! Тест из примера не подходит под ограничения для подзадачи 1, но решение принимается на проверку только в том случае, если оно выводит правильный ответ на тесте из примера. Решение должно выводить правильный ответ на тест, даже если оно рассчитано на решение только подзадачи 1.
N = 3, −10 ≤ bi ≤ 10
3 ≤ N ≤ 500, −100 ≤ bi ≤ 100
3 ≤ N ≤ 100 000, −100 ≤ bi ≤ 100
3 ≤ N ≤ 1000, −109 ≤ bi ≤ 109
3 ≤ N ≤ 300 000, −109 ≤ bi ≤ 109
По запросу сообщается баллы за каждую подзадачу.
№ | Входной файл (sequence.in ) |
Выходной файл (sequence.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | transform.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | transform.out | |||
Максимальный балл: | 100 |
В некотором королевстве есть n городов, соединенных магическими порталами. Каждая пара различных городов соединена ровно одним магическим порталом, позволяющим мгновенно перемещаться из одного города в другой.
Из-за свойств магии, определяющей работу порталов, каждый портал можно использовать только в одну сторону. Для каждой пары городов A и B известно, можно ли воспользоваться порталом для перемещения напрямую из A в B или из B в A.
Из-за особенностей магических порталов иногда при перемещении жителей королевства из одного города в другой приходится использовать несколько порталов. Также могут существовать такие пары городов, что из одного города в другой нельзя добраться, используя только магические порталы.
Жители королевства называют город совершенным, если из него можно добраться до любого другого города в королевстве, используя только магические порталы. Пусть изначально количество совершенных городов в королевстве равно k.
Недавно король принял решение выбрать пару городов и изменить разрешенное направление перемещения по порталу, соединяющему их, на противоположное. Для выбора лучшего варианта король хочет понять, какое количество совершенных городов может оказаться в королевстве после перенастройки ровно одного портала.
Для получения этой информации король планирует запросить в министерстве транспорта соответствующий отчет. Король может запросить либо частичный, либо полный отчет. Содержимое отчета зависит от параметра L, для частичного отчета L = k + 1, для полного отчета L = 1.
Отчет содержит для каждого целого числа m, такого что m ≥ L, число таких пар городов A и B, для которых выполняются следующие условия:
Таким образом, частичный отчет содержит информацию только о тех способах перенастройки одного портала, которые строго увеличивают количество совершенных городов в королевстве. Полный отчет содержит информацию обо всех способах перенастройки одного портала.
Требуется написать программу, которая по информации о разрешенных направлениях перемещения с использованием магических порталов, и информации о том, требуется предоставить частичный или полный отчет, формирует соответствующий отчет и выводит его в описанном ниже формате.
В приведенных примерах изначально совершенным является только город 2.
Изменив направление порталов, соединяющих пары городов (2, 3), (2, 4) или (2, 5), можно сделать все города совершенными. Изменение направление любого другого портала делает совершенным один город.
Внимание! Второй тест не подходит под ограничения для первых трех подзадач, но решение принимается на проверку только в том случае, если оно выводит правильный ответ на все тесты из примера. Решение должно выводить правильный ответ на второй тест даже, если оно рассчитано на решение только каких-либо подзадач из первых трех.
В других тестах n ≠ 5.
В этой задаче четыре подзадачи. Баллы за каждую подзадачу начисляются только в случае, если все тесты подзадачи пройдены.
2 ≤ n ≤ 50, p = 0
2 ≤ n ≤ 300, p = 0
2 ≤ n ≤ 2000, p = 0
2 ≤ n ≤ 2000, p = 1
По запросу сообщается баллы за каждую подзадачу.
Первая строка входного файла содержит два целых числа: n — количество городов в королевстве и p, равное либо 0, если требуется вывести частичный отчет, либо 1, если требуется вывести полный отчет.
Последующие n строк содержат по n символов, каждый из которых может быть «+», «–» или «.», и i-я из этих строк описывает магические порталы, соединяющие i-й город с другими городами.
В i-й строке j-й символ равен «+», если магический портал позволяет напрямую перемещаться из i-го города в j-й, равен «–», если магический портал позволяет напрямую перемещаться из j-го города в i-й, и равен «.», если i = j.
Первая строка выходного файла должна содержать одно целое число k — количество совершенных городов в королевстве.
Если требуется частичный отчет (p = 0), то вторая строка выходного файла должна содержать (n−k) целых неотрицательных чисел, разделенных пробелами, где i-е из этих чисел должно быть равно количеству пар городов, изменение направления портала между которыми на противоположное приводит к тому, что количество совершенных городов в королевстве станет равным (k + i). Если при этом k = n, то вторая строка может отсутствовать, либо быть пустой.
Если требуется полный отчет (p = 1), то вторая строка должна содержать n целых неотрицательных чисел, разделенных пробелами, где i-е из этих чисел должно быть равно количеству пар городов, изменение направления портала между которыми на противоположное приводит к тому, что количество совершенных городов в королевстве станет равным i.
2 ≤ n ≤ 2000
№ | Входной файл (transform.in ) |
Выходной файл (transform.out ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 2 сек | |
Входной файл: | capitals.in | Ограничение памяти: | 512 Мб | |
Выходной файл: | capitals.out | |||
Максимальный балл: | 100 |
В стране Триландии близятся выборы новых столиц. Столицы в Триландии необычные, поскольку ими являются одновременно сразу три различных города. Такая идея размещения столиц основана на исследованиях эффективности управления страной, выполненных ведущими экономистами Триландии.
Всего в Триландии n городов, из которых некоторые пары городов соединены дорогами и по каждой из них можно проехать в обе стороны. Время проезда по каждой дороге в одну сторону равно одному часу. При этом все города соединены дорогами таким образом, что из каждого города можно добраться в любой другой, причем это можно сделать единственным способом, если по каждой дороге проезжать не более одного раза и только в одну сторону.
Как показали результаты проведенных триландскими экономистами исследований, управление страной будет наиболее эффективным, если три столицы будут выбраны так, что время проезда по кратчайшему пути между каждой парой столиц составит ровно d часов. Перед проведением выборов необходимо знать, сколько существует различных троек городов, удовлетворяющих описанным выше свойствам. Две тройки городов считаются различными, если в первой тройке есть хотя бы один город, которого нет во второй тройке, и наоборот.
Требуется написать программу, которая по количеству городов в Триландии и описанию дорог находит количество троек городов, которые могут быть столицами.
В первом примере существует единственный способ выбрать три столицы: города с номерами 2, 3 и 4. Рисунок, соответствующий первому примеру, приведен ниже.
Во втором примере существует четыре варианта выбора трёх столиц из четверки городов: 2, 3, 4 и 5. Можно также выбрать столицами города с номерами 1, 6 и 7. Рисунок, соответствующий второму примеру, приведен ниже.
3 ≤ n ≤ 105, 1 ≤ d < n
1 ≤ ai ≤ n, 1 ≤ bi ≤ n, ai ≠ bi
№ | Входной файл (capitals.in ) |
Выходной файл (capitals.out ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 2 сек | |
Входной файл: | sufpref.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | sufpref.out | |||
Максимальный балл: | 100 |
Строка s называется супрефиксом для строки t, если t начинается с s и заканчивается на s. Например, «abra» является супрефиксом для строки «abracadabra». В частности, сама строка t является своим супрефиксом. Супрефиксы играют важную роль в различных алгоритмах на строках.
В этой задаче требуется решить обратную задачу о поиске супрефикса, которая заключается в следующем. Задан словарь, содержащий n слов t1, t2, …, tn и набор из m строк-образцов s1, s2, …, sm. Необходимо для каждой строки-образца из заданного набора найти количество слов в словаре, для которых эта строка-образец является супрефиксом.
Требуется написать программу, которая по заданному числу n, n словам словаря t1, t2, …, tn, заданному числу m и m строкам-образцам s1, s2, …, sm вычислит для каждой строки-образца количество слов из словаря, для которых эта строка-образец является супрефиксом.
Правильные решения для тестов, в которых 1 ≤ n ≤ 100, 1 ≤ m ≤ 100, будут оцениваться из 30 баллов.
Первая строка входного файла содержит целое число n. Последующие n строк содержат слова t1, t2, …, tn, по одному слову в каждой строке. Каждое слово состоит из строчных букв латинского алфавита. Длина каждого слова не превышает 50. Суммарная длина всех слов не превышает 106. Словарь не содержит пустых слов.
Затем следует строка, содержащая целое число m. Последующие m строк содержат строки-образцы s1, s2, …, sm, по одной на каждой строке. Каждая строка-образец состоит из строчных букв латинского алфавита: Длина каждой строки-образца не превышает 50. Суммарная длина всех строк-образцов не превышает 106. Никакая строка-образец не является пустой строкой.
Выходной файл должен содержать m чисел, по одному на строке. Для каждой строки-образца в порядке, в котором они заданы во входном файле, следует вывести количество слов словаря, для которых она является супрефиксом.
1 ≤ n, m ≤ 200 000
№ | Входной файл (sufpref.in ) |
Выходной файл (sufpref.out ) |
---|---|---|
1 |
|
|