Входной файл: | input.txt | Ограничение времени: | 1 сек | |
Выходной файл: | output.txt | Ограничение памяти: | 256 Мб | |
Максимальный балл: | 100 |
Дан массив из N элементов, нужно научиться находить сумму чисел на отрезке.
Первая строка содержит два целых числа N и K — число чисел в массиве и количество запросов. (1 ≤ N ≤ 100 000), (0 ≤ K ≤ 100 000). Следующие K строк содержат запросы
A i x
— присвоить i-му элементу массива значение x (1 ≤ i ≤ n, 0 ≤ x ≤ 109)Q l r
— найти сумму чисел в массиве на позициях от l до r. (1 ≤ l ≤ r ≤ n)
На каждый запрос вида Q l r
нужно вывести единственное число — сумму на отрезке.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | Г. Гренкин, И. Туфанов | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt | |||
Максимальный балл: | 100 |
В ДВФУ произошло укрупнение кафедры информатики. В связи с этим встал вопрос выборе нового заведующего кафедрой. На кафедре работает много преподавателей и непросто выбрать самого достойного. Посовещавшись, преподаватели занумеровали себя и для преподавателя с номером i определили следующие числа:
Считается, что, i-й преподаватель является кандидатом на должность заведующего кафедрой в том и только том случае, когда для него не найдётся такого j-того преподавателя, что одновременно mj > mi, pj > pi, tj > ti.
Напишите программу, составляющую список кандидатов на должность заведующего кафедрой.
Входной файл содержит натуральное число n — количество преподавателей. Далее следует n троек натуральных чисел mi pi ti.
Требуется вывести в выходной файл номера отобранных преподавателей в порядке возрастания.
1 ≤ n ≤ 105
1 ≤ mi, pi, ti ≤ 109
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | И. Туфанов | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt | |||
Максимальный балл: | 100 |
Дано дерево из N вешрин, все некоторым образом пронумерованы, а корень имеет номер 1. Найдите LCA для некоторых пар вершин.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 4 сек | |
Входной файл: | trains.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | trains.out | |||
Максимальный балл: | 1 |
Железная дорога Флатландии представляет собой прямую, вдоль которой расположены N станций. Будем называть участок железной дороги от некоторой станции до следующей перегоном.
Поезд следует от станции 1 до станции N, делая остановку на каждой станции. В поезде K мест, пронумерованных от 1 до K. На поезд продаются билеты, каждый билет характеризуется тремя числами: S, T и A. Такой билет позволяет проехать от станции S до станции T на месте A.
Иван планирует в один из дней летних каникул проехать на поезде от одной станции до другой. Он выяснил, что на поезд в этот день уже продано M билетов, и возможно уже нет мест, свободных на всех перегонах между интересующими его станциями. Билет от одной станции до другой на определенное место можно купить, только если это место свободно на всех перегонах между этими станциями.
Иван сообразил, что иногда все равно можно проехать от одной станции до другой, купив несколько билетов и пересаживаясь с одного места на другое на некоторых промежуточных станциях. Разумеется, пересаживаться с места на место неудобно, поэтому Иван хочет купить минимальное количество билетов, чтобы на каждом перегоне у него было свое место.
Иван еще не решил, от какой станции и до какой он поедет. Он записал Q вариантов поездки, и для каждого из них хочет узнать, какое минимальное число билетов ему придется купить, если он выберет этот вариант.
Требуется написать программу, которая по заданному описанию уже проданных билетов и вариантов поездки Ивана определяет для каждого варианта, какое минимальное количество билетов необходимо купить, чтобы совершить такую поездку.
Первая строка входного файла содержит числа N, M и K — количество станций, количество уже проданных билетов и количество мест в поезде. Последующие M строк содержат информацию о проданных билетах.
Каждая строка содержит три числа: si, ti и ai — номер станции, от которой куплен билет, номер станции, до которой куплен билет, и номер места, на которое куплен билет.
Гарантируется, что все билеты куплены таким образом, что ни на каком перегоне ни на какое место нет более одного билета.
Далее идет строка, которая содержит число Q. Последующие Q строк содержат описания вариантов поездки. Каждая строка содержит два числа: fj, dj — номер станции, от которой Иван хочет поехать в этом варианте, и номер станции, до которой он хочет поехать.
Выходной файл должен содержать Q чисел: для каждого варианта поездки требуется вывести минимальное количество билетов, которое необходимо купить Ивану, чтобы совершить соответствующую поездку. Если поездку совершить невозможно, то для этого варианта требуется вывести −1.
2 ≤ N ≤ 200 000; 0 ≤ M ≤ 200 000, 1 ≤ K ≤ 200 000
1 ≤ si < ti ≤ N; 1 ≤ ai ≤ K
1 ≤ Q ≤ 200 000; 1 ≤ fj < dj ≤ N
В этой задаче три подзадачи. Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи успешно пройдены.
Внимание! Тест из примера не подходит под ограничения для подзадач 1 и 2, но решение принимается на проверку только в том случае, если оно выводит правильный ответ на тесте из примера. Решение должно выводить правильный ответ на тест даже, если оно рассчитано на решение только каких-либо из подзадач 1 и 2.
N ≤ 100; M ≤ 100; K ≤ 100, Q = 1
N ≤ 200 000; M ≤ 200 000; K ≤ 200 000; Q = 1
N ≤ 200 000; M ≤ 200 000; K ≤ 200 000; Q ≤ 200 000
По запросу сообщаются баллы за каждую подзадачу.
На перегоне от 2-й до 3-й станции все места заняты, поэтому проехать от 1-й до 5-й станции невозможно. От 3-й до 5-й станции можно проехать, используя два билета: от 3-й до 4-й станции на место 2 и от 4-й до 5-й на место 1. От 4-й до 5-й станции можно проехать, используя один билет на место 1.
№ | Входной файл (trains.in ) |
Выходной файл (trains.out ) |
---|---|---|
1 |
|
|