Задача 1. Улучшение успеваемости

Автор:Центральная предметно-методическая комиссия   Ограничение времени:1 сек
Входной файл:Стандартный вход   Ограничение памяти:512 Мб
Выходной файл:Стандартный выход  
Максимальный балл:100  

Условие

В лицее на уроках информатики ответы учеников оцениваются целым числом баллов от 2 до 5. Итоговая оценка по информатике выставляется как среднее арифметическое оценок на всех уроках, округленное до ближайшего целого числа. Если среднее значение находится ровно посередине между двумя целыми числами, то оценка округляется вверх.

Примеры округления оценок приведены в таблице.

Оценки на урокахСреднее арифметическоеИтоговая оценка
2, 3, 52 + 3 + 53 = 3133
3, 3, 4, 43 + 3 + 4 + 44 = 3124
5, 5, 5, 3, 55 + 5 + 5 + 3 + 55 = 4355

Все ученики лицея стремятся получить итоговую оценку по информатике не ниже 4 баллов. К сожалению, один из учеников получил на уроках a двоек, b троек и c четверок. Теперь он планирует получить несколько пятерок, причем хочет, чтобы итоговая оценка была не меньше 4 баллов. Ему надо понять, какое минимальное количество пятерок ему необходимо получить, чтобы добиться своей цели.

Требуется написать программу, которая по заданным целым неотрицательные числам a, b и c определяет минимальное количество пятерок, которое необходимо получить ученику, чтобы его итоговая оценка по информатике была не меньше 4 баллов.

Формат входных данных

Входные данные содержат три строки. Первая строка содержит целое неотрицательное число a, вторая строка содержит целое неотрицательное число b, третья строка содержит целое неотрицательное число c.

Примечание

Следует обратить внимание, что входные данные в этой и других задачах не помещаются в стандартный 32-битный тип данных. Необходимо использовать 64-битный тип данных (long long в С++, int64 в Паскале, long в Java).

Формат выходных данных

Выходные данные должны содержать одно число: минимальное число пятерок, которое необходимо получить ученику, чтобы итоговая оценка была не меньше 4 баллов.

Ограничения

0 ≤ a, b, c ≤ 1015

a + b + c ≥ 1

Описание подзадач и системы оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача Баллы Дополнительные ограничения Необходимые подзадачи Информация о проверке
1131 ≤ a ≤ 100, b = 0, c = 0

(Ученик получал только двойки)
полная
214a = 0, 1 ≤ b ≤ 100, c = 0

(Ученик получал только тройки)
полная
3150 ≤ a, b, c ≤ 1001, 2полная
4280 ≤ a, b, c ≤ 1061, 2, 3полная
5300 ≤ a, b, c ≤ 10151, 2, 3, 4полная

Примеры тестов

Стандартный вход Стандартный выход
1
2
0
0
2

Задача 2. Квадраты и кубы

Автор:Центральная предметно-методическая комиссия   Ограничение времени:1 сек
Входной файл:Стандартный вход   Ограничение памяти:512 Мб
Выходной файл:Стандартный выход  
Максимальный балл:100  

Условие

В лаборатории теории чисел одного университета изучают связь между распределением квадратов и кубов натуральных чисел.

Пусть задано целое неотрицательное число k. Рассмотрим множество натуральных чисел от a до b, включительно. Будем называть k-плотностью этого множества количество пар натуральных чисел x и y, таких, что a ≤ x2 ≤ b, a ≤ y3 ≤ b, причем |x2 − y3| ≤ k. Например, 2-плотность множества натуральных чисел от 1 до 30 равна 3, так как подходят следующие пары:

x = 1, y = 1, |x2 − y3| = |1 − 1| = 0;

x = 3, y = 2, |x2 − y3| = |9 − 8| = 1;

x = 5, y = 3, |x2 − y3| = |25 − 27| = 2.

Требуется написать программу, которая по заданным натуральным числам a и b, а также целому неотрицательному числу k, определяет k-плотность множества натуральных чисел от a до b, включительно.

Формат входных данных

Входные данные содержат три строки. Первая строка содержит натуральное число a, вторая строка содержит натуральное число b, третья строка содержит целое неотрицательное число k.

Формат выходных данных

Выходные данные должны содержать одно целое число: искомую k-плотность множества натуральных чисел от a до b, включительно.

Ограничения

1 ≤ a ≤ b ≤ 1018, 0 ≤ k ≤ 1018

Описание подзадач и системы оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача Баллы Ограничения Необходимые подзадачи Информация о проверке
a, bk
1101 ≤ a ≤ b ≤ 1000k = 0полная
2101 ≤ a ≤ b ≤ 1018k = 01полная
3151 ≤ a ≤ b ≤ 10000 ≤ k ≤ 101полная
4151 ≤ a ≤ b ≤ 1060 ≤ k ≤ 101, 3полная
5151 ≤ a ≤ b ≤ 1090 ≤ k ≤ 101, 3, 4полная
6151 ≤ a ≤ b ≤ 1090 ≤ k ≤ 1091, 3, 4, 5полная
7201 ≤ a ≤ b ≤ 10180 ≤ k ≤ 101816полная

Примеры тестов

Стандартный вход Стандартный выход
1
1
30
2
3

Задача 3. Лифт

Автор:Центральная предметно-методическая комиссия   Ограничение времени:1 сек
Входной файл:Стандартный вход   Ограничение памяти:512 Мб
Выходной файл:Стандартный выход  
Максимальный балл:100  

Условие

В современном многоэтажном офисе крупной компании установлен новый лифт. В компании работает n сотрудников. Для проверки эффективности системы управления лифтом требуется провести моделирование его работы в конце рабочего дня, когда все сотрудники должны покинуть здание и спуститься на первый этаж.

В здании m этажей, пронумерованных от 1 до m снизу-вверх. Известно, что i-й сотрудник подходит к лифту в секунду ti на этаже ai, чтобы спуститься на первый этаж.

На каждом этаже могут находиться люди, ожидающие лифт. Когда очередной сотрудник подходит к лифту, он вызывает лифт, если на этом этаже лифт еще не вызван, либо присоединяется к ожидающим лифт. Таким образом, помимо вызвавшего лифт, вместе с ним лифт могут ожидать и другие сотрудники.

В каждый момент времени не более одного вызова является активным.

Изначально лифт свободен и находится на первом этаже. Когда поступает первый вызов, этот вызов становится активным и лифт отправляется на соответствующий этаж. Если несколько вызовов поступает одновременно, активным становится вызов от сотрудника с меньшим номером.

Лифт перемещается между этажами со скоростью один этаж в секунду. Когда лифт оказывается на этаже, откуда был сделан активный вызов, в него заходят все, кто уже ожидает лифт на этом этаже, и лифт отправляется вниз на первый этаж, со скоростью один этаж в секунду.

При движении вниз лифт останавливается на тех этажах, с которых на момент проезда мимо этого этажа был сделан вызов. Все ожидающие лифт сотрудники заходят в него и вызов на этом этаже сбрасывается. Когда лифт завершает движение на первом этаже, все люди выходят из лифта, а лифт ожидает следующего вызова.

Если в момент, когда лифт освободился, есть хотя бы один необслуженный вызов, активируется вызов, который поступил раньше других. Если несколько вызовов поступило одновременно, активируется вызов от сотрудника с меньшим номером. Лифт продолжает обслуживание описанным образом, пока все люди не окажутся на первом этаже.

Будем считать, что люди входят и выходят из лифта мгновенно. Каждую секунду сначала люди подходят и вызывают лифт, а затем лифт выполняет свое действие (перемещается на соседний этаж, сажает или выпускает людей, принимает решение, на какой вызов отправиться).

Требуется написать программу, которая по описанию вызовов лифта для каждого сотрудника определяет, в какой момент этот сотрудник окажется на первом этаже.

Формат входных данных

Первая строка входных данных содержит целые числа n и m — количество людей, вызывающих лифт, и количество этажей в здании.

Следующие n строк описывают сотрудников, i-я из этих строк содержит два целых числа ti и ai — секунду, в которую i-й сотрудник подходит к лифту, и номер этажа, на котором это происходит.

Формат выходных данных

Выходные данные должны содержать n целых чисел, для каждого сотрудника требуется вывести секунду, в которую он выйдет из лифта на первом этаже.

Ограничения

1 ≤ n ≤ 105, 2 ≤ m ≤ 109

1 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 109, 2 ≤ ai ≤ m

Описание подзадач и системы оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача Баллы Дополнительные ограничения Необходимые подзадачи Информация о проверке
nmti
115n = 12 ≤ m ≤ 1001 ≤ ti ≤ 100полная
2301 ≤ n ≤ 1002 ≤ m ≤ 1001 ≤ ti ≤ 1001полная
3161 ≤ n ≤ 1002 ≤ m ≤ 1091 ≤ ti ≤ 1091, 2полная
4121 ≤ n ≤ 1052 ≤ m ≤ 1041 ≤ ti ≤ 1041, 2полная
5271 ≤ n ≤ 1052 ≤ m ≤ 1091 ≤ ti ≤ 1091, 2, 3, 4полная

Пояснения к примерам

Время в секундах 1 этаж 2 этаж 3 этаж 4 этаж
0[~]
1[~]
2[~]↑312
3[~]↑312
4[~]←☺12
5[☺1]←☺342
6[☺1→,☺3→]↑442
7[~]↑442
8[~]↑4~~~☺42
94, ☺5[~]←☺2
10[☺2]←☺4, ←☺5
11[☺2, ☺4, ☺5]
12[☺2→,☺4→,☺5→]

Использованные в пояснении к примеру обозначения

Обозначение Пояснение
[~]обозначение лифта
[~]↑jлифт движется на активный вызов, сделанный на j-м этаже
ii-й сотрудник ждет лифта
←☺ii-й сотрудник заходит в лифт
[☺i]i-й сотрудник находится в лифте
[☺i→]i-й сотрудник выходит из лифта

Примеры тестов

Стандартный вход Стандартный выход
1
5 4
2 3
2 4
5 2
5 3
9 3
6
12
6
12
12

Задача 4. Мониторинг труб

Автор:Центральная предметно-методическая комиссия   Ограничение времени:1 сек
Входной файл:Стандартный вход   Ограничение памяти:512 Мб
Выходной файл:Стандартный выход  
Максимальный балл:100  

Условие

Газораспределительная система одного региона устроена следующим образом. Она содержит n узлов, пронумерованных от 1 до n, некоторые узлы соединены односторонними трубами. Узел с номером 1 соответствует центральному газохранилищу.

Система узлов описывается числами от p2, p3, … , pn. Для всех i от 2 до n узел с номером pi соединен односторонней трубой с узлом i, газ по этой трубе передается от узла pi к узлу i. Известно, что возможно доставить газ по трубам от центрального газохранилища до любого узла системы (возможно, с использованием промежуточных узлов). В системе используются трубы различных типов, тип трубы обозначается буквой английского алфавита от "a" до "z". Труба, соединяющая узел pi с узлом i, имеет тип ci.

Для проверки качества труб используется специальный робот. Он помещается в систему труб в одном из узлов и перемещается по трубам, каждый раз проверяя трубу, по которой он перемещается. Робот может перемещаться по трубам только в том же направлении, в котором по трубе передается газ. Совершив одно или несколько перемещений по трубам между узлами, робот извлекается из системы труб.

Каждый запуск робота должен соответствовать одной из m заданных спецификаций, пронумерованных от 1 до m. Спецификация с номером t представляет собой строку st, состоящую из строчных букв английского алфавита. Запуск соответствует спецификации st, если количество перемещений робота по трубам во время запуска совпадает с длиной st, и для всех j от 1 до длины st на j-м шаге робот перемещается по трубе, тип которой совпадает с st[j] — символом на позиции j в спецификации.

Если запуск робота соответствует спецификации с номером t, то стоимость этого запуска составляет wt. Оператору системы необходимо проверить все трубы, для этого можно запускать робота несколько раз. Каждый раз выбирается спецификация и маршрут робота по трубам, соответствующий выбранной спецификации. Необходимо проверить все трубы так, чтобы суммарная стоимость запусков робота для проверки качества труб была минимальна. Одну и ту же трубу можно проверять несколько раз.

Требуется написать программу, которая по описанию системы труб и списку спецификаций определяет минимальную суммарную стоимость запусков робота, в результате которых все трубы будут проверены, а также, по требованию, список необходимых для этого запусков.

Формат входных данных

В первой строке входных данных находятся три целых числа n, m и t — количество узлов системы труб, количество спецификаций запусков робота и параметр, указывающий требуется ли вывести список запусков робота, или только их минимальную суммарную стоимость.

В последующих (n − 1) строках содержится информация о трубах, (i − 1)-я из этих строк содержит разделенные пробелом значения pi и ci, где pi — целое число, задающее номер узла, из которого ведет труба в i-й узел, а ci — строчная буква английского алфавита, задающая тип этой трубы.

В последующих m строках содержится информация о спецификациях, i-я из этих строк содержит разделенные пробелом целое число wi — стоимость запуска робота в соответствии с этой спецификацией, и состоящую из строчных букв английского алфавита строку si — саму спецификацию.

Формат выходных данных

Первая строка выходных данных должна содержать одно число — минимальную суммарную стоимость запусков робота, в результате которых все трубы будут проверены. Если проверить все трубы невозможно, требуется вывести 1.

Если t = 0, то больше ничего выводить не требуется.

Если t = 1 и проверить трубы возможно, то далее следует вывести список описаний запусков робота. В этом случае вторая строка выходных данных должна содержать число k — количество запусков робота, которое необходимо выполнить для проверки труб. В следующих k строках необходимо вывести по три целых числа ai, bi и ci — номер узла, в котором начинается запуск, номер узла, в котором заканчивается запуск, и номер спецификации, которой соответствует запуск.

Если оптимальных способов проверки несколько, требуется вывести любой из них.

Ограничения

1 ≤ n ≤ 500, 1 ≤ m ≤ 105, t равно 0 или 1

1 ≤ pi ≤ i − 1

1 ≤ wi ≤ 109. Суммарная длина строк si не превышает 106.

Пояснение к примеру

Система труб, заданная во втором примере входных данных, и оптимальный способ проверки всех труб для этого случая приведены на рисунке ниже.

aab 1 − 4
ab 2 − 5
b 1 − 6
b 6 − 7

Необходимо обратить внимание на следующие моменты:

Описание подзадач и системы оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача Баллы Дополнительные ограничения Необходимые подзадачи Информация о проверке
n, mСпециальные условияt
191 ≤ n ≤ 500

1 ≤ m ≤ 105
Длина каждой строки

si равна 1
t = 0полная
2101 ≤ n ≤ 500

1 ≤ m ≤ 105
Для всех i выполнено

pi = i − 1
t = 0полная
3221 ≤ n ≤ 15

1 ≤ m ≤ 105
t = 0баллы
4201 ≤ n ≤ 500

1 ≤ m ≤ 500
t = 0баллы
5191 ≤ n ≤ 500

1 ≤ m ≤ 105
t = 01 − 4баллы
6201 ≤ n ≤ 500

1 ≤ m ≤ 105
t = 11 − 5баллы

Примеры тестов

Стандартный вход Стандартный выход
1
3 3 0
1 a
2 b
3 a
4 b
2 a
6
2
7 3 1
1 a
2 a
3 b
3 b
1 b
6 b
3 aab
5 b
2 ab
15
4
1 4 1
1 6 2
6 7 2
2 5 3

0.202s 0.007s 29