Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | power.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | power.out | |||
Максимальный балл: | 100 |
В физико-биологической лаборатории исследуют воздействие излучения на растения при облучении через силовые поля.
Экспериментальная установка содержит квадратную платформу размером 109 × 109, заполненную плодородной почвой. Над платформой установлен источник излучения. Между источником излучения и платформой можно включать n силовых полей.
Генератор силовых полей установлен над точкой (0, 0). При этом i-е силовое поле представляет собой прямоугольник со сторонами, параллельными границам платформы и координатами двух противоположных углов (0, 0) и (xi, yi).
В эксперименте планируется изучать воздействие излучения на растения при облучении через k силовых полей. Из заданных n полей необходимо выбрать k полей для эксперимента. Ученые хотят выбрать силовые поля таким образом, чтобы площадь участка платформы, над которой находятся все k выбранных силовых полей, была максимальна.
Требуется написать программу, которая по заданным целым числам n, k и описанию n силовых полей определяет, какие k силовых полей необходимо выбрать для эксперимента, чтобы площадь участка, покрытого всеми k силовыми полями, была максимальна, и выводит площадь этого участка.
Первая строка входного файла содержит целые числа n и k — общее количество силовых полей и количество силовых полей, которые необходимо выбрать для эксперимента.
Последующие n строк содержат по два целых числа xi, yi — координаты дальнего от начала координат угла прямоугольного участка i-го силового поля.
Требуется вывести одно целое число: максимальную площадь искомого участка.
1 ≤ k ≤ n ≤ 200 000, 1 ≤ xi, yi ≤ 109
Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.
Подзадача | Баллы | Ограничения | Необходимые подзадачи | |
---|---|---|---|---|
n | k | |||
1 | 18 | 1 ≤ n ≤ 20 | 1 ≤ k ≤ n | |
2 | 25 | 1 ≤ n ≤ 300 | 1 ≤ k ≤ n | 1 |
3 | 20 | 1 ≤ n ≤ 3000 | 1 ≤ k ≤ n | 1, 2 |
4 | 17 | 2 ≤ n ≤ 200 000 | k = 2 | |
5 | 20 | 1 ≤ n ≤ 200 000 | 1 ≤ k ≤ n | 1, 2, 3, 4 |
По запросу сообщается результат окончательной проверки на каждом тесте.
На рис. 1 показаны пять силовых полей, заданных во входном файле. Оптимальный способ выбрать из них три поля для эксперимента показан на рис. 2.
Рис 1. Силовые поля в примере описания входных данных.
Рис 2. Оптимальный выбор трех из пяти силовых полей в данном примере.
№ | Входной файл (power.in ) |
Выходной файл (power.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | qual.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | qual.out | |||
Максимальный балл: | 100 |
Взаимодействие сотрудников в некоторой компании организовано в виде иерархической структуры. Всего в компании работают n сотрудников. Каждому сотруднику присвоен уникальный номер от 1 до n, директору присвоен номер 1. У каждого сотрудника, кроме директора, есть ровно один непосредственный начальник. Непосредственный начальник сотрудника i имеет номер pi , причем pi < i.
Сотрудник x является подчиненным уровня 1 сотрудника y, если px = y. Для k > 1 сотрудник x является подчиненным уровня k сотрудника y, если сотрудник px является подчиненным уровня k − 1 сотрудника y.
У директора компании появилась возможность направить некоторых сотрудников на курсы повышения квалификации. Для этого он решил выбрать два числа L и R и направить на курсы всех сотрудников с номерами i, такими что L ≤ i ≤ R.
Перед тем, как выбрать числа L и R, директор получил m пожеланий от сотрудников компании, j-е пожелание задается двумя числами uj и kj и означает, что сотрудник uj просит отправить на курсы одного из своих подчиненных уровня kj. Для экономии средств директор хочет выбрать такие L и R, чтобы количество сотрудников, направленных на повышение квалификации, было минимальным возможным, но при этом все пожелания были выполнены.
Требуется написать программу, которая по заданным в компании отношениям начальник-подчиненный и пожеланиям сотрудников определяет такие числа L и R, что если отправить на курсы повышения квалификации всех сотрудников с номерами от L до R включительно, то все пожелания будут выполнены, а количество сотрудников, направленных на повышение квалификации, будет минимальным возможным. Если оптимальных пар чисел L, R будет несколько, требуется найти ту из них, в которой значение L минимально.
Первая строка входного файла содержит число n — количество сотрудников компании. Вторая строка содержит (n − 1) чисел: p2, p3, …, pn (1 ≤ pi ≤ i) — номера непосредственных начальников сотрудников.
Третья строка содержит число m — количество пожеланий от сотрудников.
Последующие m строк задают пожелания сотрудников и содержат по два целых числа uj, kj (1 ≤ uj < n, 1 ≤ kj < n, гарантируется, что у сотрудника uj есть хотя бы один подчиненный уровня kj).
Необходимо вывести два искомых числа: L и R. Если оптимальных пар (L, R) несколько, требуется вывести ту, в которой значение L минимально.
2 ≤ n, m ≤ 200 000
Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.
Подзадача | Баллы | Ограничения | Необходимые подзадачи | |
---|---|---|---|---|
n | Дополнительные условия | |||
1 | 19 | 2 ≤ n, m ≤ 50 | ||
2 | 25 | 2 ≤ n, m ≤ 3000 | 1 | |
3 | 21 | 2 ≤ n, m ≤ 200 000 | для всех i выполнено pi = i − 1 | |
4 | 35 | 2 ≤ n, m ≤ 200 000 | 1, 2, 3 |
По запросу сообщаются баллы за каждую подзадачу.
На повышение квалификации будут направлены сотрудники с номерами 3, 4, 5 и 6. Сотрудник с номером 3 является подчиненным уровня 1 сотрудника с номером 1, сотрудник с номером 4 — подчиненным уровня 2 сотрудника с номером 1, а сотрудник с номером 6 — подчиненным уровня 1 сотрудника с номером 3.
№ | Входной файл (qual.in ) |
Выходной файл (qual.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | data.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | data.out | |||
Максимальный балл: | 101 |
Телекоммуникационная сеть крупной IT-компании содержит n серверов, пронумерованных от 1 до n. Некоторые пары серверов соединены двусторонними каналами связи, всего в сети m каналов. Гарантируется, что сеть серверов устроена таким образом, что по каналам связи можно передавать данные с любого сервера на любой другой сервер, возможно с использованием одного или нескольких промежуточных серверов.
Множество серверов A называется отказоустойчивым, если при недоступности любого канала связи выполнено следующее условие. Для любого не входящего в это множество сервера X существует способ передать данные по остальным каналам на сервер X хотя бы от одного сервера из множества A.
На рис. 1 показан пример сети и отказоустойчивого множества из серверов с номерами 1 и 4. Данные на сервер 2 можно передать следующим образом. При недоступности канала между серверами 1 и 2 — с сервера 4, при недоступности канала между серверами 2 и 3 — с сервера 1. На серверы 3 и 5 при недоступности любого канала связи можно по другим каналам передать данные с сервера 4.
Рис. 1. Пример сети и отказоустойчивого множества серверов.
В рамках проекта группе разработчиков компании необходимо разместить свои данные в сети. Для повышения доступности данных и устойчивости к авариям разработчики хотят продублировать свои данные, разместив их одновременно на нескольких серверах, образующих отказоустойчивое множество. Чтобы минимизировать издержки, необходимо выбрать минимальное по количеству серверов отказоустойчивое множество. Кроме того, чтобы узнать, насколько гибко устроена сеть, необходимо подсчитать количество способов выбора такого множества, и поскольку это количество способов может быть большим, необходимо найти остаток от деления этого количества способов на число 109 + 7.
Требуется написать программу, которая по заданному описанию сети определяет следующие числа: k — минимальное количество серверов в отказоустойчивом множестве серверов, c — остаток от деления количества способов выбора отказоустойчивого множества из k серверов на число 109 + 7
Первая строка входного файла содержит целые числа n и m — количество серверов и количество каналов связи соответственно.
Следующие m строк содержат по два целых числа и описывают каналы связи между серверами. Каждый канал связи задается двумя целыми числами: номерами серверов, которые он соединяет.
Гарантируется, что любые два сервера соединены напрямую не более чем одним каналом связи, никакой канал не соединяет сервер сам с собой, и для любой пары серверов существует способ передачи данных с одного из них на другой, возможно с использованием одного или нескольких промежуточных серверов.
Выведите два целых числа, разделенных пробелом: k — минимальное число серверов в отказоустойчивом множестве серверов, c — количество способов выбора отказоустойчивого множества из k серверов, взятое по модулю 109 + 7
2 ≤ n ≤ 200000, 1 ≤ m ≤ 200000
Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.
Подзадача | Баллы | Дополнительные ограничения | Необходимые подзадачи | |
---|---|---|---|---|
n | m | |||
1 | 25 | 2 ≤ n ≤ 10 | 1 ≤ m ≤ 45 | |
2 | 27 | 2 ≤ n ≤ 200000 | m = n − 1 | |
3 | 28 | 2 ≤ n ≤ 1000 | 1 ≤ m ≤ 5000 | 1 |
4 | 21 | 2 ≤ n ≤ 200000 | 1 ≤ m ≤ 200000 | 1, 2, 3 |
По запросу сообщается результат окончательной проверки на каждом тесте.
В приведённом примере отказоустойчивыми являются следующие множества из двух серверов: {1, 3}, {1, 4}, {1, 5}.
№ | Входной файл (data.in ) |
Выходной файл (data.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | mining.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | mining.out | |||
Максимальный балл: | 100 |
Ведется проект по освоению планеты соседней звездной системы. Для добычи полезных ископаемых планируется направить на планету несколько партий роботов.
Участок поверхности планеты, на котором планируется добывать полезные ископаемые, представляет собой клетчатый прямоугольник размером w на h, клетки участка имеют координаты от (1, 1) до (w, h). В некоторых клетках участка находятся базы специалистов, в которые могут быть доставлены партии роботов. Всего на участке размещено s баз, и i-я база находится в клетке с координатами (xi, yi).
Каждая партия роботов характеризуется тремя параметрами: j-я партия доставляется на базу bj, содержит nj роботов и каждый робот партии обладает мобильностью mj.
Когда партия роботов доставляется на соответствующую базу, каждый робот этой партии перемещается по поверхности планеты от базы до некоторой клетки. Если мобильность робота равна m, он может не более m раз переместиться на одну из восьми соседних клеток, как показано на рис. 1.
Рис. 1. Возможные перемещения робота в восьми направлениях.
После того как роботы из всех доставленных партий размещаются на участке, они активируются и начинают добычу полезных ископаемых. В процессе перемещения в одной клетке может одновременно находиться произвольное количество роботов. Однако после активации в каждой клетке должно находиться не более q роботов.
Руководством проекта получена информация о t партиях роботов, которые могут быть последовательно отправлены на планету. После доставки всех партий роботов, учитывая их ограниченную мобильность, возможна ситуация, что не удастся разместить роботов на участке так, чтобы в каждой клетке оказалось не больше q роботов. Поэтому руководство должно выбрать k первых партий роботов, где 0 ≤ k ≤ t, которые будут полностью доставлены на соответствующие базы. После этого, если k < t, следует дополнительно принять z из nk + 1 роботов следующей, (k + 1)-й партии, 0 ≤ z < nk + 1.
Все полученные таким образом роботы должны с учетом ограничения на мобильность разместиться на участке таким образом, чтобы в каждой клетке было не более q роботов. После этого они будут активированы и начнут добычу полезных ископаемых. Разумеется, руководство проекта старается максимизировать количество роботов, которые будут доставлены на планету, поэтому, с учетом описанных ограничений, требуется максимизировать k, а затем максимизировать z.
Требуется написать программу, которая по размерам участка, числу q, описанию расположения баз, а также количеству запланированных партий роботов и их описанию определяет максимальное число k — количество партий роботов, и затем – максимальное число z – дополнительное количество роботов из (k + 1)-й партии, чтобы, доставив роботов на планету, их можно было разместить на участке таким образом, чтобы в каждой клетке оказалось не более q роботов.
Первая строка входного файла содержит числа w, h, s и q. Последующие s строк содержат по два целых числа xi, yi и описывают базы специалистов (1 ≤ xi ≤ w, 1 ≤ yi ≤ h).
Следующая строка содержит число t — количество партий роботов. Последующие t строк описывают партии роботов и содержат по 3 целых числа: bj, nj и mj (1 ≤ bj ≤ s, 1 ≤ nj ≤ w × h × q, 0 ≤ mj < max(w, h)).
Требуется вывести два числа: k и z, 0 ≤ k ≤ t. Если k = t, то z должно быть равно 0, иначе должно выполняться условие 0 ≤ z < nk + 1.
1 ≤ w, h ≤ 105, 1 ≤ s ≤ 4, 1 ≤ q ≤ 100, 1 ≤ t ≤ 100,
В приведенном примере описания входных данных следует полностью принять первую партию роботов и дополнительно принять 7 роботов из второй партии. На рис. 2 показано, как можно разместить этих роботов на участке, чтобы в каждой клетке было не более одного робота. Базы специалистов показаны кружками. Клетки, в которых окажутся роботы с базы 1, показаны вертикальной штриховкой, а клетки, в которых окажутся роботы с базы 2, показаны серым цветом.
Рис. 2. Возможное размещение роботов на участке в данном примере.
Баллы за каждую из подзадач 1–5 начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.
Тесты для подзадачи 6 запускаются только в случае, если все тесты подзадач 1–5 успешно пройдены. Каждый тест в подзадаче 6 оценивается независимо в 1 балл.
Подзадача | Баллы | Дополнительные ограничения | Необходимые подзадачи | ||
---|---|---|---|---|---|
w, h | s | q | |||
1 | 18 | 1 ≤ w, h ≤ 20 | s = 1 | q = 1 | |
2 | 12 | 1 ≤ w, h ≤ 20 | 1 ≤ s ≤ 2 | q = 1 | 1 |
3 | 9 | 1 ≤ w, h ≤ 20 | 1 ≤ s ≤ 3 | q = 1 | 1, 2 |
4 | 10 | 1 ≤ w, h ≤ 20 | 1 ≤ s ≤ 3 | 1 ≤ q ≤ 100 | 1, 2, 3 |
5 | 15 | 1 ≤ w, h ≤ 105 | s = 1 | 1 ≤ q ≤ 100 | 1 |
6 | 36 | 1 ≤ w, h ≤ 105 | 1 ≤ s ≤ 4 | 1 ≤ q ≤ 100 | 1, 2, 3, 4, 5 |
По запросу сообщаются баллы за каждую подзадачу.
№ | Входной файл (mining.in ) |
Выходной файл (mining.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | numbers.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | numbers.out | |||
Максимальный балл: | 100 |
Софья считает число интересным, если его цифры идут в неубывающем порядке. Например, числа 123, 1111 или 888999 — интересные.
Софья заинтересовалась, сколько существует интересных положительных чисел, лежащих в диапазоне от L до R включительно. Это число может оказаться довольно большим для больших L и R, поэтому Софья хочет найти остаток от деления этого числа на 109 + 7.
Требуется написать программу, которая по заданным L и R определяет количество интересных чисел, лежащих в диапазоне от L до R включительно, и выводит остаток от деления этого числа на 109 + 7.
Входной файл содержит две строки. Первая строка содержит число L, вторая строка содержит число R.
Выходной файл должен одно целое число — остаток от деления количества интересных чисел, лежащих в диапазоне от L до R включительно, на 109 + 7.
1 ≤ L ≤ R ≤ 10100
L = 1, R ≤ 1000.
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
1 ≤ L ≤ R ≤ 1018.
В этой подзадаче 11 тестов, каждый тест оценивается в 2 балла. Баллы за каждый тест начисляются независимо.
L = 1, R = 10k для некоторого целого k, 2 ≤ k ≤ 100.
В этой подзадаче 8 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
1 ≤ L ≤ R ≤ 10100.
В этой подзадаче 11 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
По запросу сообщается результат окончательной проверки на каждом тесте.
№ | Входной файл (numbers.in ) |
Выходной файл (numbers.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 2 сек | |
Входной файл: | sequence.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | sequence.out | |||
Максимальный балл: | 100 |
Цикл лекций в университете Флатландии посвящен изучению последовательностей.
Профессор называет последовательность целых чисел a1, a2, …, aN гармоничной, если каждое число, кроме a1 и aN, равно сумме соседних: a2 = a1 + a3, a3 = a2 + a4, …, aN − 1 = aN − 2 + aN. Например, последовательность [1, 2, 1, −1] является гармоничной, поскольку 2 = 1 + 1, и 1 = 2 + (−1).
Рассмотрим последовательности равной длины: A = [a1, a2, …, aN] и B = [b1, b2, …, bN]. Расстоянием между этими последовательностями будем называть величину N(A, B) = |a1 − b1| + |a2 − b2| + ⋯ + |aN − bN|. Например, d([1, 2, 1, −1], [1, 2, 0, 0]) = |1 − 1| + |2 − 2| + |1 − 0| + |−1 − 0| = 0 + 0 + 1 + 1 = 2.
В конце лекции профессор написал на доске последовательность из N целых чисел B = [b1, b2, …, bN] и попросил студентов в качестве домашнего задания найти гармоничную последовательность A = [a1, a2, …, aN], такую, что d(A, B) минимально. Чтобы облегчить себе проверку, профессор просит написать в качестве ответа только искомое минимальное расстояние d(A, B).
Требуется написать программу, которая по заданной последовательности B определяет, на каком минимальном расстоянии от последовательности B найдется гармоничная последовательность A.
Первая строка входного файла содержит целое число N — количество элементов в последовательности.
Вторая строка содержит n целых чисел b1, b2, …, bN.
Выходной файл должна содержать одно целое число: минимальное возможное расстояние от последовательности во входном файле до гармоничной последовательности.
3 ≤ N ≤ 300 000; −109 ≤ bi ≤ 109
В приведенном примере оптимальной является, например, гармоничная последовательность [1, 2, 1, −1].
В этой задаче пять подзадач. Баллы за подзадачу начисляются только в случае, если все тесты для данной подзадачи пройдены.
Внимание! Тест из примера не подходит под ограничения для подзадачи 1, но решение принимается на проверку только в том случае, если оно выводит правильный ответ на тесте из примера. Решение должно выводить правильный ответ на тест, даже если оно рассчитано на решение только подзадачи 1.
N = 3, −10 ≤ bi ≤ 10
3 ≤ N ≤ 500, −100 ≤ bi ≤ 100
3 ≤ N ≤ 100 000, −100 ≤ bi ≤ 100
3 ≤ N ≤ 1000, −109 ≤ bi ≤ 109
3 ≤ N ≤ 300 000, −109 ≤ bi ≤ 109
По запросу сообщается баллы за каждую подзадачу.
№ | Входной файл (sequence.in ) |
Выходной файл (sequence.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | strange.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | strange.out | |||
Максимальный балл: | 100 |
Рассмотрим строку S, состоящую из строчных букв латинского алфавита. Примером такой строки является, например, строка «abba».
Подстрокой строки S называется строка, составленная из одного или нескольких подряд идущих символов строки S. Обозначим как W(S) множество, состоящее из всех возможных подстрок строки S. При этом каждая подстрока входит в это множество не более одного раза, даже если она встречается в строке S несколько раз.
Например, W(«abba») = {«a», «b», «ab», «ba», «bb», «abb», «bba», «abba»}.
Подпоследовательностью строки S называется строка, которую можно получить из S удалением произвольного числа символов. Обозначим как Y(S) множество, состоящее из всех возможных подпоследовательностей строки S. Аналогично W(S), каждая подпоследовательность строки S включается в Y(S) ровно один раз, даже если она может быть получена несколькими способами удаления символов из строки S. Поскольку любая подстрока строки S является также ее подпоследовательностью, то множество Y(S) включает в себя W(S), но может содержать также и другие строки.
Например, Y(«abba») = W(«abba») ∪ {«aa», «aba»}. Знак ∪ обозначает объединение множеств.
Будем называть строку S странной, если для нее W(S) = Y(S). Так, строка «abba» не является странной, а, например, строка «abb» является, так как для нее W(«abb») = Y(«abb») = {«a», «b», «ab», «bb», «abb»}.
Будем называть странностью строки число ее различных странных подстрок. При вычислении странности подстрока считается один раз, даже если она встречается в строке S в качестве подстроки несколько раз. Так, странность строки «abba» равна 7, поскольку любая ее подстрока, кроме всей строки, является странной.
Требуется написать программу, которая по заданной строке S определяет ее странность.
Входной файл содержит строку S, состоящую из строчных букв латинского алфавита.
Выходной файл должен содержать одно целое число: странность заданной во входном файле строки.
Строка S имеет длину от 1 до 200 000 символов.
В этой задаче четыре подзадачи. Баллы за каждую подзадачу начисляются только в случае, если все тесты для данной подзадачи успешно пройдены.
Строка S состоит только из букв «a» и «b». Длина строки S не превышает 50.
Длина строки S не превышает 50.
Длина строки S не превышает 1000.
Длина строки S не превышает 200 000.
По запросу сообщается результат окончательной проверки на каждом тесте.
№ | Входной файл (strange.in ) |
Выходной файл (strange.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 4 сек | |
Входной файл: | trains.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | trains.out | |||
Максимальный балл: | 100 |
Железная дорога Флатландии представляет собой прямую, вдоль которой расположены N станций. Будем называть участок железной дороги от некоторой станции до следующей перегоном.
Поезд следует от станции 1 до станции N, делая остановку на каждой станции. В поезде K мест, пронумерованных от 1 до K. На поезд продаются билеты, каждый билет характеризуется тремя числами: S, T и A. Такой билет позволяет проехать от станции S до станции T на месте A.
Иван планирует в один из дней летних каникул проехать на поезде от одной станции до другой. Он выяснил, что на поезд в этот день уже продано M билетов, и возможно уже нет мест, свободных на всех перегонах между интересующими его станциями. Билет от одной станции до другой на определенное место можно купить, только если это место свободно на всех перегонах между этими станциями.
Иван сообразил, что иногда все равно можно проехать от одной станции до другой, купив несколько билетов и пересаживаясь с одного места на другое на некоторых промежуточных станциях. Разумеется, пересаживаться с места на место неудобно, поэтому Иван хочет купить минимальное количество билетов, чтобы на каждом перегоне у него было свое место.
Иван еще не решил, от какой станции и до какой он поедет. Он записал Q вариантов поездки, и для каждого из них хочет узнать, какое минимальное число билетов ему придется купить, если он выберет этот вариант.
Требуется написать программу, которая по заданному описанию уже проданных билетов и вариантов поездки Ивана определяет для каждого варианта, какое минимальное количество билетов необходимо купить, чтобы совершить такую поездку.
Первая строка входного файла содержит числа N, M и K — количество станций, количество уже проданных билетов и количество мест в поезде. Последующие M строк содержат информацию о проданных билетах.
Каждая строка содержит три числа: si, ti и ai — номер станции, от которой куплен билет, номер станции, до которой куплен билет, и номер места, на которое куплен билет.
Гарантируется, что все билеты куплены таким образом, что ни на каком перегоне ни на какое место нет более одного билета.
Далее идет строка, которая содержит число Q. Последующие Q строк содержат описания вариантов поездки. Каждая строка содержит два числа: fj, dj — номер станции, от которой Иван хочет поехать в этом варианте, и номер станции, до которой он хочет поехать.
Выходной файл должен содержать Q чисел: для каждого варианта поездки требуется вывести минимальное количество билетов, которое необходимо купить Ивану, чтобы совершить соответствующую поездку. Если поездку совершить невозможно, то для этого варианта требуется вывести −1.
2 ≤ N ≤ 200 000; 0 ≤ M ≤ 200 000, 1 ≤ K ≤ 200 000
1 ≤ si < ti ≤ N; 1 ≤ ai ≤ K
1 ≤ Q ≤ 200 000; 1 ≤ fj < dj ≤ N
В этой задаче три подзадачи. Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи успешно пройдены.
Внимание! Тест из примера не подходит под ограничения для подзадач 1 и 2, но решение принимается на проверку только в том случае, если оно выводит правильный ответ на тесте из примера. Решение должно выводить правильный ответ на тест даже, если оно рассчитано на решение только каких-либо из подзадач 1 и 2.
N ≤ 100; M ≤ 100; K ≤ 100, Q = 1
N ≤ 200 000; M ≤ 200 000; K ≤ 200 000; Q = 1
N ≤ 200 000; M ≤ 200 000; K ≤ 200 000; Q ≤ 200 000
По запросу сообщаются баллы за каждую подзадачу.
На перегоне от 2-й до 3-й станции все места заняты, поэтому проехать от 1-й до 5-й станции невозможно. От 3-й до 5-й станции можно проехать, используя два билета: от 3-й до 4-й станции на место 2 и от 4-й до 5-й на место 1. От 4-й до 5-й станции можно проехать, используя один билет на место 1.
№ | Входной файл (trains.in ) |
Выходной файл (trains.out ) |
---|---|---|
1 |
|
|