Author: | StdAlg | Time limit: | 1 sec | |
Input file: | input.txt | Memory limit: | 8 Mb | |
Output file: | output.txt |
No. | Input file (input.txt ) |
Output file (output.txt ) |
---|---|---|
1 |
|
|
Author: | StdAlg | Time limit: | 3 sec | |
Input file: | input.txt | Memory limit: | 256 Mb | |
Output file: | output.txt |
No. | Input file (input.txt ) |
Output file (output.txt ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 2 сек | |
Входной файл: | diploma.in | Ограничение памяти: | 64 Мб | |
Выходной файл: | diploma.out |
Когда Петя учился в школе, он часто участвовал в олимпиадах по информатике, математике и физике. Так как он был достаточно способным мальчиком и усердно учился, то на многих из этих олимпиад он получал дипломы. К окончанию школы у него накопилось N дипломов, причем, как оказалось, все они имели одинаковые размеры: W — в ширину и H — в высоту.
Сейчас Петя учится в одном из лучших российских университетов и живет в общежитии со своими одногруппниками. Он решил украсить свою комнату, повесив на одну из стен свои дипломы за школьные олимпиады. Так как к бетонной стене прикрепить дипломы достаточно трудно, то он решил купить специальную доску из пробкового дерева, чтобы прикрепить ее к стене, а к ней — дипломы. Для того чтобы эта конструкция выглядела более красиво, Петя хочет, чтобы доска была квадратной и занимала как можно меньше места на стене. Каждый диплом должен быть размещен строго в прямоугольнике размером W на H. Прямоугольники, соответствующие различным дипломам, не должны иметь общих внутренних точек.
Требуется написать программу, которая вычислит минимальный размер стороны доски, которая потребуется Пете для размещения всех своих дипломов.
Решения, правильно работающие только при W, H, N ≤ 1000, будут оцениваться в 40 баллов.
Входной файл содержит три целых числа: W, H, N
В выходной файл необходимо вывести ответ на поставленную задачу.
1 ≤ W, H, N ≤ 109
№ | Входной файл (diploma.in ) |
Выходной файл (diploma.out ) |
---|---|---|
1 |
|
|
Автор: | Центральная предметно-методическая комиссия по информатике | Ограничение времени: | 1 сек | |
Входной файл: | space.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | space.out |
Для освоения Марса требуется построить исследовательскую базу. База должна состоять из N одинаковых модулей.
Каждый модуль представляет собой жилой отсек, который в основании имеет форму прямоугольника размером A × B метров.
Для повышения надежности модулей инженеры могут добавить вокруг каждого модуля дополнительный защитный слой. Толщина этого слоя должна составлять целое число метров, и все модули должны иметь одинаковую толщину защитного слоя.
Модуль с защитным слоем, толщина которой равна D метрам, будет иметь в основании форму прямоугольника размером (A + 2 D) × (B + 2 D) метров.
Все модули должны быть расположены на заранее подготовленном прямоугольном поле размером W × H метров.
При этом они должны быть организованы в виде регулярной сетки, их стороны должны быть параллельны сторонам поля, и модули должны быть ориентированы одинаково.
Требуется написать программу, которая по заданным количеству и размеру модулей, а также размеру поля для их размещения, определяет максимальную толщину дополнительного защитного слоя, который можно добавить к каждому модулю.
В первом примере можно установить дополнительный защитный слой толщиной 2 метра и разместить модули на поле, как показано на рисунке.
Во втором примере жилой отсек имеет в основании размер 5 × 5 метров, а поле — размер 6 × 6 метров.
Добавить дополнительный защитный слой к модулю нельзя.
Входной файл содержит пять разделенных пробелами целых чисел: N, A, B, W, H.
Гарантируется, что без дополнительного защитного слоя все модули можно разместить в поселении описанным образом.
Выходной файл должен содержать одно целое число: максимальную возможную толщину дополнительного защитного слоя.
Если дополнительный защитный слой установить не удастся, требуется вывести число 0.
1 ≤ N, A, B, W, H ≤ 1018
1 ≤ N ≤ 1000; 1 ≤ A, B, W, H ≤ 1000.
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
1 ≤ N ≤ 1000; 1 ≤ A, B, W, H ≤ 109.
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
1 ≤ N ≤ 109; 1 ≤ A, B, W, H ≤ 1018.
В этой подзадаче 8 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
1 ≤ N ≤ 1018; 1 ≤ A, B, W, H ≤ 1018.
В этой подзадаче 9 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
По запросу сообщается результат окончательной проверки на каждом тесте.
№ | Входной файл (space.in ) |
Выходной файл (space.out ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | И. Олейников | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt |
По мотивам романа А. и Б. Стругацких “Понедельник начинается в субботу”.
Очередной понедельник выдался в НИИЧАВО (Научно-Исследовательский Институт ЧАродейства и ВОлшебства) на удивление беспокойным. Началось все с проблем в отделе исследования живой, мёртвой и водопроводной воды, куда на прошлой неделе завезли новый аквариум. Туда и вошел Привалов в самый интересный момент беседы между Амвросием Амбруазовичем Выбегалло и заведующим отделом смысла жизни Кристобалем Хозевичем Хунтой. Сейчас Кристобаль Хозевич в красках описывал, какие могут возникнуть повреждения всей новейшей системы безопасности, недавно установленной в институте, от всего того количества воды, которым сейчас затапливался его отдел.
— Подождите, остановил его речь Выбегалло, вот закончим проверку и выключим воду.
— Да какая же это проверка, это же чистой воды саботаж! — возмущался Хунта, вот сейчас заделаю все дырки в вашем аквариуме, и тогда будем разговаривать.
— Нет, это категорически невозможно! — Возражал Выбегалло, — как вы себе это представляете? Мы проводим важнейший эксперимент!
— Может быть, объясните, что здесь все-таки происходит? - вмешался в разговор Привалов
— Позвольте, я объясню, начал было Выбегалло, но Кристобаль Хозевич не дал ему закончить, и, сделав руками несколько пассов, произнес, — вот теперь порядок, ничего не вливается и не выливается, можете объяснять.
— Ну, раз вы все-таки запечатали отверстия, то спешки особой нет, — продолжил Амвросий Амбруазович, — на прошлой неделе мне, доставили новый большой аквариум, необычной конструкции, а если быть точным, с несколькими прямоугольными отверстиями на лицевой стороне, вот посмотрите.
Привалов, наконец, осмотрел новый аквариум. Он представлял собой прямоугольный параллелепипед размерами W × H × L метров без верхней крышки, на лицевой стороне которого было вырезано N квадратных отверстий c длиной стороны ai метров. Сверху над аквариумом висела большая труба, через которую в него поступало M кубических метров воды в секунду.
— Так вот, — продолжил Выбегалло, — до появления здесь Кристобаля Хозевича мы проводили эксперимент, целью которого было определить уровень воды в этом аквариуме при заданной конфигурации отверстий.
— А более сухого способа вы не нашли, — вставил свою реплику Хунта
Привалов, как программист, прекрасно понимал, что для таких экспериментов вовсе не обязательно затапливать пол-института. Нужно лишь определить скорость вытекания воды из отверстий и описать весь эксперимент очень простой компьютерной моделью. Свои соображения он и изложил собравшимся.
— Замечательная идея, молодой человек, — произнес Выбегалло, — это ж сколько средств то можно сэкономить, да и воду тратить не придется.
Через несколько минут он передал Привалову формулу расчета потока воды из отверстий в аквариуме. Поскольку аквариум до эксперимента был специально заколдован, формула была оказалась простой: через отверстие площадью b квадратных метров в одну секунду будет вытекать V × b кубических метров воды.
В начале эксперимента аквариум пуст. Через некоторое время после того, как из трубы начнёт поступать вода, уровень в воды в аквариуме стабилизируется (либо аквариум переполнится). Теперь осталось только написать программу, определяющую высоту стабильного уровня воды.
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | А. Жуплев | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt |
Стрельба в марсианском тире проходит по следующим правилам: Когда стрелок приходит в тир, ему выдаётся новая мишень, имеющая вид горизонтального отрезка чёрного цвета. Стрелок делает N серий выстрелов. Перед началом каждой серии некоторые отрезки мишени красят в красный цвет. Краска не смывается до конца всех серий стрельбы. За выстрел начисляется балл, если он попал в закрашенный участок.
Требуется написать программу, рассчитывающую количество баллов, набранных стрелком.
Входной файл содержит целое число N, за которым идут N блоков, описывающих серии выстрелов. Серия номер i задаётся числом Ki — количеством закрашиваемых отрезков, за которым следуют Ki пар чисел Li, j Ri, j, задающих левую и правую границу очередного отрезка; затем Si — количество выстрелов в i-ой серии, и наконец Si чисел Pi, j, задающих координаты попаданий.
Выходной файл должен содержать единственное число — количество набранных баллов.
1 ≤ N ≤ 100
0 ≤ Ki ≤ 1000
0 ≤ Si ≤ 104
0 ≤ Li, j ≤ Ri, j ≤ 107
0 ≤ Pi, j ≤ 107
Все числа во входном файле целые
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
Автор: | А. Кленин, И. Бураго | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
На улице длиной в 100 метров установлено N фонарей высотой y1, y2, …, yN метров на расстоянии x1, x2, … xN метров от начала улицы. Форма отражателей такова, что свет каждого фонаря распространяется в пределах конуса с углом при вершине 90°.
Требуется определить яркость самого освещённого участка улицы, т.е. максимальное количество фонарей, освещающих один и тот же участок.№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | StdAlg | Ограничение времени: | 60 сек | |
Входной файл: | input.txt | Ограничение памяти: | 2048 Мб | |
Выходной файл: | output.txt |
K-ой порядковой статистикой N-элементной последовательности AN называется число AK, которое будет стоять на K-ом месте после упорядочивания элементов этой последовательности по возрастанию.
Последовательность AN задаётся следующим образом. A1 = P, Ai = (Ai−1 ⋅ Q) mod V.
Во входном файле содержатся целые числа Q V P N K
В выходном файле должно содержаться единственное число — K-ая порядковая статистика исходной последовательности.
V, Q ≠ 0
0 ≤ Q ⋅ V, Q ⋅ P ≤ 231−1
1 ≤ K ≤ N ≤ 4 ⋅ 107
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|