Входной файл: | input.txt | Ограничение времени: | 2 сек | |
Выходной файл: | output.txt | Ограничение памяти: | 64 Мб |
Требуется найти максимальный поток в сети с несколькими истоками и стоками.
В первой строке входного файла содержится число N — количество вершин в сети. Далее следует N чисел ai ∈ 0, 1, 2. Если ai = 0, то i-ая вершина — это обычный узел; если ai = 1 то i-ая вершина — это исток; если ai = 2 то i-ая вершина — это сток. Гарантируется, что в сети есть хотя бы один исток и хотя бы один сток.
Далее следует матрица целых чисел U размером N × N. 0 ≤ Uij ≤ 106 — вместимость ребра из i-ой вершины в j-ую. На диагонали матрицы находятся нули.
В выходной файл выведите единственное число — объем максимального потока.
2 ≤ N ≤ 50
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
3 |
|
|
Автор: | Центральная предметно-методическая комиссия | Ограничение времени: | 1 сек | |
Входной файл: | mining.in | Ограничение памяти: | 256 Мб | |
Выходной файл: | mining.out |
Ведется проект по освоению планеты соседней звездной системы. Для добычи полезных ископаемых планируется направить на планету несколько партий роботов.
Участок поверхности планеты, на котором планируется добывать полезные ископаемые, представляет собой клетчатый прямоугольник размером w на h, клетки участка имеют координаты от (1, 1) до (w, h). В некоторых клетках участка находятся базы специалистов, в которые могут быть доставлены партии роботов. Всего на участке размещено s баз, и i-я база находится в клетке с координатами (xi, yi).
Каждая партия роботов характеризуется тремя параметрами: j-я партия доставляется на базу bj, содержит nj роботов и каждый робот партии обладает мобильностью mj.
Когда партия роботов доставляется на соответствующую базу, каждый робот этой партии перемещается по поверхности планеты от базы до некоторой клетки. Если мобильность робота равна m, он может не более m раз переместиться на одну из восьми соседних клеток, как показано на рис. 1.
Рис. 1. Возможные перемещения робота в восьми направлениях.
После того как роботы из всех доставленных партий размещаются на участке, они активируются и начинают добычу полезных ископаемых. В процессе перемещения в одной клетке может одновременно находиться произвольное количество роботов. Однако после активации в каждой клетке должно находиться не более q роботов.
Руководством проекта получена информация о t партиях роботов, которые могут быть последовательно отправлены на планету. После доставки всех партий роботов, учитывая их ограниченную мобильность, возможна ситуация, что не удастся разместить роботов на участке так, чтобы в каждой клетке оказалось не больше q роботов. Поэтому руководство должно выбрать k первых партий роботов, где 0 ≤ k ≤ t, которые будут полностью доставлены на соответствующие базы. После этого, если k < t, следует дополнительно принять z из nk + 1 роботов следующей, (k + 1)-й партии, 0 ≤ z < nk + 1.
Все полученные таким образом роботы должны с учетом ограничения на мобильность разместиться на участке таким образом, чтобы в каждой клетке было не более q роботов. После этого они будут активированы и начнут добычу полезных ископаемых. Разумеется, руководство проекта старается максимизировать количество роботов, которые будут доставлены на планету, поэтому, с учетом описанных ограничений, требуется максимизировать k, а затем максимизировать z.
Требуется написать программу, которая по размерам участка, числу q, описанию расположения баз, а также количеству запланированных партий роботов и их описанию определяет максимальное число k — количество партий роботов, и затем – максимальное число z – дополнительное количество роботов из (k + 1)-й партии, чтобы, доставив роботов на планету, их можно было разместить на участке таким образом, чтобы в каждой клетке оказалось не более q роботов.
Первая строка входного файла содержит числа w, h, s и q. Последующие s строк содержат по два целых числа xi, yi и описывают базы специалистов (1 ≤ xi ≤ w, 1 ≤ yi ≤ h).
Следующая строка содержит число t — количество партий роботов. Последующие t строк описывают партии роботов и содержат по 3 целых числа: bj, nj и mj (1 ≤ bj ≤ s, 1 ≤ nj ≤ w × h × q, 0 ≤ mj < max(w, h)).
Требуется вывести два числа: k и z, 0 ≤ k ≤ t. Если k = t, то z должно быть равно 0, иначе должно выполняться условие 0 ≤ z < nk + 1.
1 ≤ w, h ≤ 105, 1 ≤ s ≤ 4, 1 ≤ q ≤ 100, 1 ≤ t ≤ 100,
В приведенном примере описания входных данных следует полностью принять первую партию роботов и дополнительно принять 7 роботов из второй партии. На рис. 2 показано, как можно разместить этих роботов на участке, чтобы в каждой клетке было не более одного робота. Базы специалистов показаны кружками. Клетки, в которых окажутся роботы с базы 1, показаны вертикальной штриховкой, а клетки, в которых окажутся роботы с базы 2, показаны серым цветом.
Рис. 2. Возможное размещение роботов на участке в данном примере.
Баллы за каждую из подзадач 1–5 начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.
Тесты для подзадачи 6 запускаются только в случае, если все тесты подзадач 1–5 успешно пройдены. Каждый тест в подзадаче 6 оценивается независимо в 1 балл.
Подзадача | Баллы | Дополнительные ограничения | Необходимые подзадачи | ||
---|---|---|---|---|---|
w, h | s | q | |||
1 | 18 | 1 ≤ w, h ≤ 20 | s = 1 | q = 1 | |
2 | 12 | 1 ≤ w, h ≤ 20 | 1 ≤ s ≤ 2 | q = 1 | 1 |
3 | 9 | 1 ≤ w, h ≤ 20 | 1 ≤ s ≤ 3 | q = 1 | 1, 2 |
4 | 10 | 1 ≤ w, h ≤ 20 | 1 ≤ s ≤ 3 | 1 ≤ q ≤ 100 | 1, 2, 3 |
5 | 15 | 1 ≤ w, h ≤ 105 | s = 1 | 1 ≤ q ≤ 100 | 1 |
6 | 36 | 1 ≤ w, h ≤ 105 | 1 ≤ s ≤ 4 | 1 ≤ q ≤ 100 | 1, 2, 3, 4, 5 |
По запросу сообщаются баллы за каждую подзадачу.
№ | Входной файл (mining.in ) |
Выходной файл (mining.out ) |
---|---|---|
1 |
|
|
Автор: | A. Klenin | Ограничение времени: | 8 сек | |
Входной файл: | input.txt | Ограничение памяти: | 4 Мб | |
Выходной файл: | output.txt |
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Author: | StdAlg | Time limit: | 1 sec | |
Input file: | input.txt | Memory limit: | 64 Mb | |
Output file: | output.txt |
No. | Input file (input.txt ) |
Output file (output.txt ) |
---|---|---|
1 |
|
|
Author: | M. Sporyshev, A. Klenin, A. Baranov | Time limit: | 1 sec | |
Input file: | input.txt | Memory limit: | 256 Mb | |
Output file: | output.txt |
For arbitrary non-empty strings S1 and S2, the Fibonacci sequence of strings is defined by a recurrence Si + 2 = Si + 1 + Si, where the '+' sign denotes string concatenation.
Let's say that string T has Fibonacci level n if there exists some Fibonacci sequence of strings which contains Sn = T. Note that any string of length 2 or more has Fibonacci level 3.
Your program must, given a string T, find its maximum Fibonacci level n as well as two starting strings S1 and S2 of corresponding Fibonacci sequence of strings.
Input file contains a single string T, consisting of lowercase Latin letters.
Output file must contain 3 lines: integer n followed by strings S1 and S2.
If there are several optimal solutions, output any of them.
2 ≤ |T| ≤ 106
No. | Input file (input.txt ) |
Output file (output.txt ) |
---|---|---|
1 |
|
|
2 |
|
|
3 |
|
|
Author: | StdAlg | Time limit: | 1 sec | |
Input file: | input.txt | Memory limit: | 256 Mb | |
Output file: | output.txt |
a
'
to 'z
' and spaces.
No. | Input file (input.txt ) |
Output file (output.txt ) |
---|---|---|
1 |
|
|
Автор: | Известная | Ограничение времени: | 4 сек | |
Входной файл: | input.txt | Ограничение памяти: | 64 Мб | |
Выходной файл: | output.txt |
Праздничный пирог имеет форму неправильного выпуклого многоугольника с N вершинами. Хозяйка хочет порезать его на N − 2 кусков. Причем ее высокие эстетические идеалы требуют, чтобы куски имели форму треугольников. Разрезы же должны проходить через вершины изначального многоугольника и не пересекаться.
Как показывает практика, чем длиннее разрез, тем больше драгоценной начинки остается на ноже. Поэтому, чтобы минимизировать накладные расходы, желательно разделить пирог так, чтобы суммарная длина разрезов была минимальна.
Напишите программу, которая решает эту задачу.
Первая строка входного файла содержит число N — количество вершин многоугольника.
Вторая строка содержит N пар разделенных пробелами целых чисел xi yi — координаты вершин многоугольника в порядке обхода по часовой стрелке.
В выходной файл выведите минимальную суммарную длину разрезов с точностью до четырех знаков после запятой.
3 ≤ N ≤ 100
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|
Автор: | A. Klenin | Ограничение времени: | 2 сек | |
Входной файл: | input.txt | Ограничение памяти: | 256 Мб | |
Выходной файл: | output.txt |
№ | Входной файл (input.txt ) |
Выходной файл (output.txt ) |
---|---|---|
1 |
|
|