Задача A. Дипломы

Автор:Центральная предметно-методическая комиссия по информатике   Ограничение времени:2 сек
Входной файл:diploma.in   Ограничение памяти:64 Мб
Выходной файл:diploma.out  

Условие

Когда Петя учился в школе, он часто участвовал в олимпиадах по информатике, математике и физике. Так как он был достаточно способным мальчиком и усердно учился, то на многих из этих олимпиад он получал дипломы. К окончанию школы у него накопилось N дипломов, причем, как оказалось, все они имели одинаковые размеры: W — в ширину и H — в высоту.

Сейчас Петя учится в одном из лучших российских университетов и живет в общежитии со своими одногруппниками. Он решил украсить свою комнату, повесив на одну из стен свои дипломы за школьные олимпиады. Так как к бетонной стене прикрепить дипломы достаточно трудно, то он решил купить специальную доску из пробкового дерева, чтобы прикрепить ее к стене, а к ней — дипломы. Для того чтобы эта конструкция выглядела более красиво, Петя хочет, чтобы доска была квадратной и занимала как можно меньше места на стене. Каждый диплом должен быть размещен строго в прямоугольнике размером W на H. Прямоугольники, соответствующие различным дипломам, не должны иметь общих внутренних точек.

Требуется написать программу, которая вычислит минимальный размер стороны доски, которая потребуется Пете для размещения всех своих дипломов.

Система оценивания

Решения, правильно работающие только при W, H, N ≤ 1000, будут оцениваться в 40 баллов.

Формат входного файла

Входной файл содержит три целых числа: W, H, N

Формат выходного файла

В выходной файл необходимо вывести ответ на поставленную задачу.

Ограничения

1 ≤ W, H, N ≤ 109

Примеры тестов

Входной файл (diploma.in) Выходной файл (diploma.out)
1
2 3 10
9

Задача B. Хоттабыч и гирлянда

Автор:А. Жуплев   Ограничение времени:2 сек
Входной файл:input.txt   Ограничение памяти:64 Мб
Выходной файл:output.txt  

Условие

Однажды под новый год Гассан Абдуррахман ибн Хоттаб решил помочь Вольке нарядить ёлку. Среди ёлочных украшений Хоттабычу больше всего понравилась гирлянда, состоящая из N цветных лампочек. Приглядевшись, Хоттабыч насчитал K различных цветов лампочек.

Хоттабыч вспомнил два своих любимых цвета, нашел пару ближайших друг к другу лампочек первого и второго цветов (порядок лампочек в паре не имеет значения), и подсчитал количество лампочек между ними. Потом он выбрал ещё два цвета и повторил поиск для них... Хоттабычу очень понравилось это занятие, и теперь он просит вас написать программу, которая, получив на входе описание гирлянды и M запросов Хоттабыча, отвечала бы на каждый запрос.

Рекомендуется рассмотреть частичные решения

Формат входного файла

В первой строке входного файла содержится число N.

В последующих N строчках содержатся цвета лампочек гирлянды.

В N+2-й строке входного файла содержится число M.

В последующих 2*M строчках содержатся запросы Хоттабыча (по две строки на запрос).

Формат выходного файла

Выходной файл должен содержать M чисел — ответы для каждого запроса в порядке поступления.

Если в запросе указан цвет, отсутствующий на гирлянде, то в качестве ответа следует вывести 1.

Если лампочки обоих цветов есть, но пару найти невозможно, следует вывести 2.

Ограничения

2 ≤ N ≤ 15000

1 ≤ M ≤ 20000

1 ≤ K ≤ 3000

Строка, задающая цвет, состоит из латинских букв, её длина не превышает 255 символов.

Примеры тестов

Входной файл (input.txt) Выходной файл (output.txt)
1
10
Red
Green
Blue
Red
Brown
Green
Yellow
Black
Green
Red
6
Red
Green
Blue
Brown
Yellow
Green
Red
Black
Black
Blue
Orange
Green
0
1
0
1
4
-1
2
10
B
C
D
F
G
E
R
C
A
G
3
C
G
R
B
E
E
1 5 -2

Задача C. Большой линейный коллайдер

Автор:Центральная предметно-методическая комиссия   Ограничение времени:3 сек
Входной файл:linear.in   Ограничение памяти:256 Мб
Выходной файл:linear.out  

Условие

Группа ученых работает в международной научной лаборатории, которая занимается исследованиями поведения элементарных частиц в установке для экспериментов "Большой линейный коллайдер" (БЛК). Установка БЛК представляет собой прямую, в некоторых точках которой размещаются частицы, которые могут перемещаться вдоль прямой.

В очередном эксперименте в БЛК размещаются n частиц, каждая из которых представляет собой либо отрицательно заряженную частицу — электрон e, либо положительно заряженную частицу — позитрон e+. В эксперименте i-я частица исходно размещается в точке с координатой xi. После начала эксперимента в результате работы БЛК частицы начнут перемещаться в разные стороны вдоль прямой: e частицы перемещаются по направлению уменьшения координаты, а e+ частицы — по направлению увеличения координаты. Абсолютные величины скоростей всех частиц одинаковы и равны 1.

Если в процессе перемещения частицы e и e+ оказываются в одной точке, то они взаимодействуют и обе исчезают, при этом они не влияют на дальнейшее поведение остальных частиц.

Ученые выбрали m различных моментов времени t1, t2, ..., tm, для каждого из которых их интересует, какое количество частиц находится в БЛК непосредственно после каждого из этих моментов времени. Отсчет времени начинается с момента 0, когда частицы приходят в движение. Частицы, исчезнувшие в результате взаимодействия в момент времени tj, не должны учитываться при подсчете количества частиц для этого момента времени.

Требуется написать программу, которая по описанию исходного расположения и типов частиц, а также заданным моментам времени, определяет для каждого из моментов количество частиц, которое будет находиться в БЛК непосредственно после этого момента.

Формат входного файла

Первая строка входного файла содержит число n — количество частиц. Последующие n строк описывают частицы следующим образом: каждая строка содержит по два целых числа xi и vi — координату i-й частицы и ее тип соответственно (x1 < x2 < x3 < ... < xn). Частица e описывается значением vi = −1, а частица e+ описывается значением vi = 1.

Следующая строка содержит целое число m — количество моментов времени, которые выбрали ученые. Последняя строка содержит m целых чисел: t1,t2,...,tm.

Формат выходного файла

Для каждого момента времени во входном файле требуется вывести одно число: количество частиц в БЛК непосредственно после этого момента.

Ограничения

1 ≤ n, m ≤ 200000

109 ≤ xi, m ≤ 109

0 ≤ ti ≤ 109

vi равно 1 или 1

Описание подзадач и системы оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача Баллы Ограничения Необходимые подзадачи
nximti
1351 ≤ n ≤ 100100 ≤ xi ≤ 100m = 10 ≤ ti ≤ 100
2121 ≤ n ≤ 100109 ≤ xi ≤ 109m = 10 ≤ ti ≤ 1091
3121 ≤ n ≤ 200 000109 ≤ xi ≤ 109m = 10 ≤ ti ≤ 1091, 2
4411 ≤ n ≤ 200 000109 ≤ xi ≤ 109 1 ≤ m ≤ 200 0000 ≤ ti ≤ 1091, 2, 3

Получение информации о результатах окончательной проверки

По запросу сообщается результат окончательной проверки на каждом тесте.

Пояснение к примеру

В приведенном примере в начальный момент в БЛК находятся 4 частицы: частица e+ в точке 1, частица e в точке 0, частица e+ в точке 1 и частица e в точке 5.

В момент времени 0.5 первая частица e+ и первая частица e сталкиваются в точке с координатой 0.5 и исчезают. В момент времени 1 оставшиеся две частицы находятся в точках с координатами 2 и 4, соответственно. В момент времени 2 они сталкиваются в точке 3 и исчезают. Больше в БЛК частиц нет.

Примеры тестов

Входной файл (linear.in) Выходной файл (linear.out)
1
4
-1 1
0 -1
1 1
5 -1
4
0 1 2 3
4
2
0
0

0.099s 0.006s 13