Задача C. Скобки

Автор:Жюри зимних сборов 2009   Ограничение времени:1 сек
Входной файл:brackets.in   Ограничение памяти:256 Мб
Выходной файл:brackets.out  
Максимальный балл:100  

Условие

Юная программистка Агнесса недавно узнала на уроке информатики об арифметических выражениях. Она заинтересовалась вопросом, что случится, если из арифметического выражения удалить всё, кроме скобок. Введя запрос в своём любимом поисковике, она выяснила, что математики называют последовательности скобок, которые могли бы встречаться в некотором арифметическом выражении, правильными скобочными последовательностями.

Так, последовательность ()(()) является правильной скобочной последовательностью, потому что она может, например, встречаться в выражении (2+2):(3–(5–2)+4), а последовательности (() и ())( не являются таковыми. Легко видеть, что существует пять правильных скобочных последовательностей, состоящих ровно из шести скобок (по три скобки каждого типа — открывающих и закрывающих): ((())), (()()), (())(), ()(()) и ()()().

Агнесса заинтересовалась простейшими преобразованиями правильных скобочных последовательностей. Для начала Агнесса решила ограничиться добавлением скобок в последовательность. Она очень быстро выяснила, что после добавления одной скобки последовательность перестаёт быть правильной, а вот добавление двух скобок иногда сохраняет свойство правильности. Например, при добавлении двух скобок в различные места последовательности ()() можно получить последовательности (()()), (())(), ()(()) и ()()(). Легко видеть, что при любом способе добавления двух скобок с сохранением свойства правильности одна из новых скобок должна быть открывающей, а другая — закрывающей.

Агнесса хочет подсчитать количество различных способов добавления двух скобок в заданную правильную скобочную последовательность так, чтобы снова получилась правильная скобочная последовательность. К сожалению, выяснилось, что это количество может быть в некоторых случаях очень большим. Агнесса различает способы получения последовательности по позициям добавленных скобок в полученной последовательности. Например, даже при добавлении скобок в простейшую последовательность () можно получить другую правильную скобочную последовательность семью способами: ()(), (()), (()), (()), (()), ()(), ()().

Таким образом, если в полученной последовательности добавленная открывающая скобка стоит в позиции i, а добавленная закрывающая — в позиции j, то два способа, соответствующие парам (i1, j1) и (i2, j2), считаются различными, если i1 ≠ i2 или j1 ≠ j2.

Требуется написать программу, которая по заданной правильной скобочной последовательности определяет количество различных описанных выше способов добавления двух скобок.

Данная задача содержит три подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

Подзадача 1 (40 баллов): Величина n (количество скобок каждого типа) не превосходит 50.

Подзадача 2 (30 баллов): Величина n (количество скобок каждого типа) не превосходит 2500.

Подзадача 3 (30 баллов): Величина n (количество скобок каждого типа) не превосходит 50 000.

Формат входного файла

Входной файл состоит из одной непустой строки, содержащей ровно 2n символов: n открывающих и n закрывающих круглых скобок. Гарантируется, что эта строка является правильной скобочной последовательностью.

Формат выходного файла

Выведите в выходной файл количество различных способов добавления в заданную последовательность двух скобок таким образом, чтобы получилась другая правильная скобочная последовательность.

Примеры тестов

Входной файл (brackets.in) Выходной файл (brackets.out)
1
()
7
2
()()
17
3
(())
21

0.055s 0.008s 13