Problem B. Binary Operation

Author:ACM ICPC NEERC 2010 Jury   Time limit:2 sec
Input file:binary.in   Memory limit:256 Mb
Output file:binary.out  

Statement

Consider a binary operation op defined on digits 0 to 9, op: digs × digs ↦ digs, such that 0op 0 = 0.

A binary operation opd is a generalization of op to the set of non-negative integers, opd: nneg × nneg ↦ nneg. The result of aopd b is defined in the following way: if one of the numbers a and b has fewer digits than the other in decimal notation, then append leading zeroes to it, so that the numbers are of the same length; then apply the operation op digit-wise to the corresponding digits of a and b.

Let us define opd to be left-associative, that is, aopd bopd c is to be interpreted as (aopd b)opd c.

Given a binary operation op and two non-negative integers a and b, calculate the value of res.

Input file format

The first ten lines of the input file contain the description of the binary operation op. The i-th line of the input file contains a space-separated list of ten digits — the j-th digit in this list is equal to (i − 1)op (j − 1).

The first digit in the first line is always 0.

The eleventh line of the input file contains two non-negative integers a and b (0 ≤ a ≤ b ≤ 1018).

Output file format

Output a single number — the value of res without extra leading zeroes.

Sample tests

No. Input file (binary.in) Output file (binary.out)
1
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 0
2 3 4 5 6 7 8 9 0 1
3 4 5 6 7 8 9 0 1 2
4 5 6 7 8 9 0 1 2 3
5 6 7 8 9 0 1 2 3 4
6 7 8 9 0 1 2 3 4 5
7 8 9 0 1 2 3 4 5 6
8 9 0 1 2 3 4 5 6 7
9 0 1 2 3 4 5 6 7 8
0 10
15

0.128s 0.016s 15